• Title/Summary/Keyword: Regression estimator

Search Result 313, Processing Time 0.023 seconds

Partially linear multivariate regression in the presence of measurement error

  • Yalaz, Secil;Tez, Mujgan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.511-521
    • /
    • 2020
  • In this paper, a partially linear multivariate model with error in the explanatory variable of the nonparametric part, and an m dimensional response variable is considered. Using the uniform consistency results found for the estimator of the nonparametric part, we derive an estimator of the parametric part. The dependence of the convergence rates on the errors distributions is examined and demonstrated that proposed estimator is asymptotically normal. In main results, both ordinary and super smooth error distributions are considered. Moreover, the derived estimators are applied to the economic behaviors of consumers. Our method handles contaminated data is founded more effectively than the semiparametric method ignores measurement errors.

A note on standardization in penalized regressions

  • Lee, Sangin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.505-516
    • /
    • 2015
  • We consider sparse high-dimensional linear regression models. Penalized regressions have been used as effective methods for variable selection and estimation in high-dimensional models. In penalized regressions, it is common practice to standardize variables before fitting a penalized model and then fit a penalized model with standardized variables. Finally, the estimated coefficients from a penalized model are recovered to the scale on original variables. However, these procedures produce a slightly different solution compared to the corresponding original penalized problem. In this paper, we investigate issues on the standardization of variables in penalized regressions and formulate the definition of the standardized penalized estimator. In addition, we compare the original penalized estimator with the standardized penalized estimator through simulation studies and real data analysis.

On Confidence Intervals of Robust Regression Estimators (로버스트 회귀추정에 의한 신뢰구간 구축)

  • Lee Dong-Hee;Park You-Sung;Kim Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.97-110
    • /
    • 2006
  • Since it is well-established that even high quality data tend to contain outliers, one would expect fat? greater reliance on robust regression techniques than is actually observed. But most of all robust regression estimators suffers from the computational difficulties and the lower efficiency than the least squares under the normal error model. The weighted self-tuning estimator (WSTE) recently suggested by Lee (2004) has no more computational difficulty and it has the asymptotic normality and the high break-down point simultaneously. Although it has better properties than the other robust estimators, WSTE does not have full efficiency under the normal error model through the weighted least squares which is widely used. This paper introduces a new approach as called the reweighted WSTE (RWSTE), whose scale estimator is adaptively estimated by the self-tuning constant. A Monte Carlo study shows that new approach has better behavior than the general weighted least squares method under the normal model and the large data.

Pitfalls in the Application of the COTE in a Linear Regression Model with Seasonal Data

  • Seuck Heun Song;YouSung Park
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.353-358
    • /
    • 1997
  • When the disturbances in the linear repression medel are generated by a seasonal autoregressive scheme the Cochrane Orcutt transformation estimator (COTE) is a well known alternative to Generalized Least Squares estimator (GLSE). In this paper it is analyzed in which situation the Ordinary Least Squares estimator (OLSE) is always better than COTE for positive autocorrelation in terms of efficiency which is here defined as the ratio of the total variances.

  • PDF

A Robust Estimation Procedure for the Linear Regression Model

  • Kim, Bu-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.2
    • /
    • pp.80-91
    • /
    • 1987
  • Minimum $L_i$ norm estimation is a robust procedure ins the sense that it leads to an estimator which has greater statistical eficiency than the least squares estimator in the presence of outliers. And the $L_1$ norm estimator has some desirable statistical properties. In this paper a new computational procedure for $L_1$ norm estimation is proposed which combines the idea of reweighted least squares method and the linear programming approach. A modification of the projective transformation method is employed to solve the linear programming problem instead of the simplex method. It is proved that the proposed algorithm terminates in a finite number of iterations.

  • PDF

Estimation on Modified Proportional Hazards Model

  • Lee, Kwang-Ho;Lee, Mi-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.1
    • /
    • pp.59-66
    • /
    • 1994
  • Heller and Simonoff(1990) compared several methods of estimating the regression coefficient in a modified proportional hazards model, when the response variable is subject to censoring. We give another method of estimating the parameters in the model which also allows the dependent variable to be censored and the error distribution to be unspecified. The proposed method differs from that of Miller(1976) and that of Buckely and James(1979). We also obtain the variance estimator of the coefficient estimator and compare that with the Buckely-James Variance estimator studied by Hillis(1993).

  • PDF

Optimal designs for small Poisson regression experiments using second-order asymptotic

  • Mansour, S. Mehr;Niaparast, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.527-538
    • /
    • 2019
  • This paper considers the issue of obtaining the optimal design in Poisson regression model when the sample size is small. Poisson regression model is widely used for the analysis of count data. Asymptotic theory provides the basis for making inference on the parameters in this model. However, for small size experiments, asymptotic approximations, such as unbiasedness, may not be valid. Therefore, first, we employ the second order expansion of the bias of the maximum likelihood estimator (MLE) and derive the mean square error (MSE) of MLE to measure the quality of an estimator. We then define DM-optimality criterion, which is based on a function of the MSE. This criterion is applied to obtain locally optimal designs for small size experiments. The effect of sample size on the obtained designs are shown. We also obtain locally DM-optimal designs for some special cases of the model.

Bayesian Typhoon Track Prediction Using Wind Vector Data

  • Han, Minkyu;Lee, Jaeyong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • In this paper we predict the track of typhoons using a Bayesian principal component regression model based on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regression model to conduct the track prediction based on the time point. Based on regression model, we applied to variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator. We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000-2005). We compare our prediction results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration. We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a dynamical model.

Dual Generalized Maximum Entropy Estimation for Panel Data Regression Models

  • Lee, Jaejun;Cheon, Sooyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.395-409
    • /
    • 2014
  • Data limited, partial, or incomplete are known as an ill-posed problem. If the data with ill-posed problems are analyzed by traditional statistical methods, the results obviously are not reliable and lead to erroneous interpretations. To overcome these problems, we propose a dual generalized maximum entropy (dual GME) estimator for panel data regression models based on an unconstrained dual Lagrange multiplier method. Monte Carlo simulations for panel data regression models with exogeneity, endogeneity, or/and collinearity show that the dual GME estimator outperforms several other estimators such as using least squares and instruments even in small samples. We believe that our dual GME procedure developed for the panel data regression framework will be useful to analyze ill-posed and endogenous data sets.

A BERRY-ESSEEN TYPE BOUND OF REGRESSION ESTIMATOR BASED ON LINEAR PROCESS ERRORS

  • Liang, Han-Ying;Li, Yu-Yu
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1753-1767
    • /
    • 2008
  • Consider the nonparametric regression model $Y_{ni}\;=\;g(x_{ni})+{\epsilon}_{ni}$ ($1\;{\leq}\;i\;{\leq}\;n$), where g($\cdot$) is an unknown regression function, $x_{ni}$ are known fixed design points, and the correlated errors {${\epsilon}_{ni}$, $1\;{\leq}\;i\;{\leq}\;n$} have the same distribution as {$V_i$, $1\;{\leq}\;i\;{\leq}\;n$}, here $V_t\;=\;{\sum}^{\infty}_{j=-{\infty}}\;{\psi}_je_{t-j}$ with ${\sum}^{\infty}_{j=-{\infty}}\;|{\psi}_j|$ < $\infty$ and {$e_t$} are negatively associated random variables. Under appropriate conditions, we derive a Berry-Esseen type bound for the estimator of g($\cdot$). As corollary, by choice of the weights, the Berry-Esseen type bound can attain O($n^{-1/4}({\log}\;n)^{3/4}$).