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Abstract
In this paper, a partially linear multivariate model with error in the explanatory variable of the nonparametric

part, and an m dimensional response variable is considered. Using the uniform consistency results found for
the estimator of the nonparametric part, we derive an estimator of the parametric part. The dependence of the
convergence rates on the errors distributions is examined and demonstrated that proposed estimator is asymptot-
ically normal. In main results, both ordinary and super smooth error distributions are considered. Moreover, the
derived estimators are applied to the economic behaviors of consumers. Our method handles contaminated data
is founded more effectively than the semiparametric method ignores measurement errors.

Keywords: multivariate regression, partially linear model, errors in variables, kernel smoothing,
asymptotic normality, Engel curves

1. Introduction

Let (X1,T1), . . . , (Xn,Tn) be independent random variables in a model in which the conditional mean
is linear in Xi but possibly nonlinear in Ti ∈ Rm. Robinson (1988) considered a semiparametric
partially linear model that relates a response Y to the predictors (X,T ) through the function XTβ+g(T ).
Applying the conditional expectation operator to this model, one obtains

E(Yi|Ti) = E
(
XT

i β|Ti

)
+ E(g(Ti)|Ti) + E(εi|Ti)

= E(Xi|Ti)Tβ + g(Ti),

where εi are the model errors. Defining the conditional expectations as

gy(t) = E(Yi|Ti = t),
gx(t) = E(Xi|Ti = t)

the last expression can be written as

gy (t) = gx (t)T β + g(t).
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Assuming m = 1 and given Ti = t, the Nadaraya-Watson estimates of the conditional mean of Yi and
Xi take the following form:

gy (t) =

∑n
i=1 YiK

(
t−Ti
hn

)
∑n

i=1 K
(

t−Ti
hn

) ,

gx (t) =

∑n
i=1 XiK

(
t−Ti
hn

)
∑n

i=1 K
(

t−Ti
hn

) ,

where K is the kernel function and hn is the some sequence of bandwidths satisfying hn → 0 as
n→ ∞. Subtracting these estimates from the original equation, one obtains

Yi − gy (t) =
[
Xi − gx (t)

]T β + εi,

Ỹi = X̃T
i β + εi.

That is, the estimator of β can be predicted by the transformed equation

β̂n =
(
X̃T X̃

)−1 (
X̃T Ỹ

)
.

In this paper, we investigate the semiparametric regression problem with errors in the variables.
This problem often occurs in econometrics when the sampling error stems from the deficiency of the
measuring techniques.

Interest in studying and publishing the measurement error found in a semiparametric regression
analysis is increasing. Some publications deal with errors in variable of parametric part, X (Liang et
al., 1999), errors in variable of nonparametric part, T (Liang, 2000) and errors in variables of both
parametric and nonparametric parts (Zhu and Cui, 2003).

Suppose that the explanatory variable T is measured with error and Wi = Ti+Ui is observed instead
of T . Suppose also that the measurement errors Ui are i.i.d., and independent of (Yi, Xi,Ti). Using the
kernel deconvolution method, Liang (2000) estimated the nonparametric regression function and the
parameters of the parametric part in a semiparametric partially linear model. The author proposed

ωni (t) = Kn

(
t −Wi

hn

) /∑
j

Kn

(
t −W j

hn

)
with

Kn(t) =
1

2π

∫
R1

exp(−ist)
ϕK(s)

ϕU(s/hn)
ds,

where ϕK(s) is the Fourier transform of K and ϕU(s) is the characteristic function of the error variable
U (Fan and Truong (1993) for details). Using this information, the author then defined

gn(w) =
n∑

i=1

ωni(w)
(
Yi − XT

i β
)
,

β̂n =
(
X̃T X̃

)−1 (
X̃T Ỹ

)
,
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where Ỹi = Yi −
∑n

j=1 ωn j (Wi) Y j and X̃i = Xi −
∑n

j=1 ωn j (Wi) X j.
Toprak (2015) applied this model to measurements with errors following an unknown distribu-

tion. Using two repeated observations, the author estimated the parameters of the parametric part and
determined the asymptotic normality properties of this estimator.

Some applications (such as financial applications) have focused on working with a multidimen-
sional response variable. Models with multivariate nonparametric errors in the variables have been
applied to dependent observations in Fan and Masry (1992), Masry (1991, 1993a, 1993b, 1993c).
Moreover, Yalaz (2019) considered multivariate partially linear errors in variables regression while
unknown function is multidimensional and measurement error is an (n × 1) matrix. However, models
with semiparametric multivariate errors in the variables have not been clarified in the i.i.d case.

Now, we define a model with partially linear multivariate (m ≥ 1) errors in the variables. For n
observations, this model is expressed as

Y = XTβ + g(T) + ε,
W = T + U, (1.1)

where Y = (y1, . . . , ym) is an (n×m) matrix of data, X = (x1, . . . , xp) is an (n× p) matrix of variables,
and β = (β1, . . . ,βm) is a (p × m) matrix of unknown coefficients. g is unknown functions for (n × m)
matrix of T, ε = (ε1, . . . , εm) = (e1, . . . , en)T is an (n × m) matrix of random errors with mean vector
0 and a matrix of variances and covariances Σ = σ j1 j2 for j1, j2 = 1, . . . ,m, and U denotes the
measurement errors. When the measurement errors U are identically distributed and independent of
(Y,X,T), we observe W instead of observing T in model (1.1).

In the Section 2, we redefine the estimate of β, seek a new estimator of g(t), and perform the
regression of Y and X on W. Section 3 provides the main result. Income holds a primary position
in the economy field. The income-expenditure behavior of consumers is among the most significant
economic behaviors. The Engel curves explain the change of expenditure on different goods as a
function of income (or total expenditure). Section 4 applies the proposed estimator to Engel curves.
Our result is proven in the Appendix.

2. Construction of estimators

Let φ(···) be an integrable real-valued function defined on Rm, m ≥ 1. When β is known, absorbing
XTβ into Y gives

Y − XTβ︸    ︷︷    ︸ = g (t) + ε.

Y∗

The more general regression function g(t) = E[φ(Y − XTβ)|T = t] = E[φ(Y∗)|T = t], t ∈ Rm can be
estimated similarly (Ioannides and Alevizos, 1997):

ĝ (t) =
1

nhm
n

∑n
j=1 φ

(
Y∗j

)
Kn

[(
t − T j

) /
hn

]
1

nhm
n

∑n
j=1 Kn

[(
t − T j

) /
hn

] , (2.1)

where Kn(t) = (1/(2π)m)
∫
Rm exp(−ist){ϕK(s)/ϕU(s/hn)}ds, st = s1t1 + · · · + sntn.

To obtain β̂, we let ω(t) = (ωn,h(ti,T j))i, j for j = 1, . . . , n, where ωn,h(t,T j) = Kn[(t − T j)/hn]/∑
i Kn[(t − Ti)/hn], and obtain ĝ(t) =

∑n
j=1 ωn,h(t,T j)φ(Y∗j ). Substituting ĝ(t) by ĝ(w), the generalized
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least squares estimator of β is found as

β̂ =
(
β̂1, . . . , β̂m

)
=

(
X̃T X̃

)−1 (
X̃T Ỹ

)
, (2.2)

where Ỹ = (I − ω (w)) Y and X̃ = (I − ω (w)) X.
In the following section we examine the asymptotic properties of the estimator β̂ using the rates

of convergence L∞ of the estimator ĝ.

3. Main results

We denote matrices by boldface letters and define γ j(t) = E[xi j|vec(T) = t]. We then define Vi j =

xi j − γ j(vec(T)), where vec(T) denotes the vector obtained by stacking the columns of T, i = 1, . . . , n
and j = 1, . . . , p. In particular, for each r ∈ {1, . . . ,m}, we have (Vi j)r = xi j − γ j(Tir) and an (n × mp)
matrix V = (V1, . . . ,Vm) for each (n × p) matrix of Vr.

To construct the asymptotic normality, we impose Assumptions 1 and 2 below, and for the non-
parametric estimation of g, we impose Assumptions 3–5 (Ioannides and Alevizos, 1997).

Assumption 1. Let I = [0, 1]m, m ≥ 1 be the unit cube. Then for a positive-definite B matrix, we
have supt∈I E(∥X1∥3 |T = t) < ∞ and E(V1VT

1 ) = B, where ∥X1∥ is the spectral norm of X1, defined as
the square root of the maximum eigenvalue of XT

1 X1.

Assumption 2. The numerator and denominator of g(t) =
∫
Rm φ(y∗) f (t, y∗)dy∗/ fn(t) and γ j(t) are

Lipschitz of order θ for some 0 < θ ≤ 1 on Rm.

Assumption 3. The Kernel function K(u) satisfies
∫
Rm ∥u∥θK(u)du < ∞, 0 < θ ≤ 1.

Assumption 4.

i. inft∈I fn (t) > 0, where I is given in Assumption 1.

ii. The distribution of the error term is ordinary-smooth or super-smooth, respectively described as
follows (Fan and Truong, 1993):

◦ A distribution is ordinary-smooth of order α if the characteristic function ϕε(t) satisfies

d0∥ t ∥−α ≤ |ϕε(t)| ≤ d1∥ t ∥−α, as ∥ t ∥ → ∞, (3.1)

where d0, d1, and α are positive constants.

◦ A distribution is super-smooth of order α if the characteristic function ϕε (t) satisfies

d0∥ t ∥α0 exp
(
−∥ t ∥α

ζ

)
≤ |ϕε (t)| ≤ d1∥ t ∥α1 exp

(
−∥ t ∥α

ζ

)
, as ∥ t ∥ → ∞, (3.2)

where d0, d1, α, and ζ are positive constants and α0 and α1 are constants of any value.

Such ordinary-smooth distributions are gamma distributions of degree p or double exponential
distributions, whereas super-smooth distributions are standard normal distributions when α = 2 and
Cauchy distributions when α = 1.



Partially linear multivariate regression in EIV 515

Assumption 5.

i. An ordinary-smooth error distribution satisfies the following conditions:

1. |ϕε(t)| > 0 for all t ∈ Rm; ∥ t ∥α|ϕε(t)| ≥ Dα for large ∥ t ∥, where α > 0 and Dα > 0.

2.
∫
Rm ∥ t ∥2α|ϕK(t)|2dt < ∞ and

∫
Rm ∥ t ∥α{ϕK(t) + ϕ′K(t)}dt < ∞.

ii. A super-smooth error distribution satisfies the following conditions:

1. |ϕε(t)| > 0 for all t ∈ Rm; |ϕε(t)| ≥ d0∥ t ∥α0 exp(−∥ t ∥α/ζ) for large ∥ t ∥, where d0 > 0, α > 0
and α0 is real.

2. ϕK(t) = 0 for ∥ t ∥ > d for some d > 0.

The following theorem states our main result, which is related to the limit distributions of β̂.

Theorem 1. Under Assumptions 1–5 and E[vec(ε)3 + ∥vec(U)∥3] < ∞, the following hold:

i. For an ordinary-smooth error distribution, we take hn = (log n/n)θ/2θ+(2α+1)m for some θ > 0 and
α > 0.

ii. For a super-smooth error distribution, we take hn = (log n)−θ/α for some θ > 0 and α > 0.

Then

n
1
2

[
vec

(
β̂ − β

)]
⇒ Np×m

(
0,Σ ⊗ B−1

)
as n→ ∞,

where Σi j = Cov(X̃i, X̃ j) and B is given in Assumption 1.
Let β̂ = (β̂T

1 , . . . , β̂
T
m)T and β = (βT

1 , . . . , β
T
m)T . Then, for each r ∈ {1, . . . ,m}, we further have

n
1
2

(
β̂r − βr

)
⇒ Np

(
0, σ2

j jB
−1

)
as n→ ∞,

where j = 1, . . . ,m.

4. Applications to Engel curves

Consumer behavior is how consumers make individual decisions about purchasing goods and ser-
vices. Consumer behavior analysis provides significant benefits to business, marketing management,
evaluation, and analysis of market opportunities. It is influenced by social, economic, psychological,
and cultural factors, which underlie the characteristics of consumer behavior.

Income is an important component of consumption expenditure and consumer behavior. Income
is the monetary expression of purchasing power, is acquired by a person or community during a
period of work time and is periodically ongoing. Income actually dictates the power of individuals to
purchase. Income distribution leads to needs, that influence income distribution among consumers in
different spending groups. Consumption expenditure is the use of income on products and services
that satisfy consumers’ needs. Consumption is driven by compulsory needs as well as influenced
by the close-acquaintance circles of societies, incomes, personal characteristics, and professions of
individual consumers.

As confirmed in most studies, expenditure is highly affected by income level. The close rela-
tionship between consumer demand and income is often represented on Engel curves. Consumption
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Table 1: Descriptive statistics for budget share data

Couples with one children
Income class

Variable (1) (2) (3) (4)
Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

Food share 0.2254 0.0979 0.1882 0.0836 0.1735 0.0729 0.1051 0.0627
Housing share 0.2447 0.1412 0.2249 0.1285 0.2144 0.1132 0.2187 0.1105
Gasoline-motor oil share 0.0401 0.0534 0.0463 0.0672 0.0797 0.1336 0.0591 0.0893
Healthcare share 0.0790 0.0521 0.0712 0.0489 0.0675 0.0459 0.0536 0.0330
Telephone services share 0.0398 0.0262 0.0318 0.0206 0.0289 0.0204 0.0198 0.0137
Log total income 8.0133 0.2806 8.7182 0.1562 9.2625 0.1309 9.7236 0.2010
Sample size 33

Couples with two children
Income class

Variable (1) (2) (3) (4)
Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

Food share 0.1544 0.0576 0.1544 0.0576 0.1544 0.0576 0.1544 0.0576
Housing share 0.2118 0.1091 0.1544 0.0576 0.1544 0.0576 0.1544 0.0576
Gasoline-motor oil share 0.0703 0.0740 0.1544 0.0576 0.1544 0.0576 0.1544 0.0576
Healthcare share 0.0618 0.0404 0.1544 0.0576 0.1544 0.0576 0.1544 0.0576
Telephone services share 0.0291 0.0200 0.1544 0.0576 0.1544 0.0576 0.1544 0.0576
Log total income 8.0690 0.3180 8.7081 0.1256 9.2074 0.1122 9.7282 0.1787
Sample size 97

patterns of households also respond to demographic characteristics; therefore, most empirical studies
on Engel curves allow the parametric entry of demographic and other household characteristics that
lead to semiparametric specification (Blundell et al., 1998; Robinson, 1988).

In this section, we apply our approach to Engel curves to show the economic behavior of con-
sumers. We selected data from the 2013 Consumer Expenditure Survey (CES) conducted by the U.S.
Department of Labor (Bureau of Labor Statistics). The selected data were acquired from households
with one or two children. We considered four income classes and five broad categories of goods:
food, housing, gasoline and motor oil, healthcare, and telephone services. Table 1 gives the descrip-
tive statistics of the sample used in the application study.

In the semiparametric approach, we specify partially linear multivariate for the budget shares and
take the logarithm of the income for the four classes:

Y = XTβ + g(ln T) + ε,

where XTβ is a linear index of the observable exogenous regressors X and unknown parameters β.
The income includes a normally distributed measurement error U:

W = T + U.

To choose the variance of U, we calculate the reliability ratio suggested by Fuller (1987):

r =
Var(T )

Var(T ) + σ2
u
= 0.85.

The parameters of the semiparametric model without measurement error (NoME) were estimated
by the Nadaraya-Watson estimator with h = 0.29. The optimal bandwidth of the estimated semipara-
metric errors-in-variables (EIV) regression was determined by cross-validation (Stefanski and Carroll,
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Figure 1: NoME fit and semiparametric EIV fit for the Engel curves.

1990). For the NoME and semiparametric EIV model, we selected a quartic kernel and a gaussian
kernel, respectively. These kernels are respectively given by(

15
16

) (
1 − u2

)2
I (|u| ≤ 1) , (4.1)

1
√

2π
exp

(
−1
2

u2
)
. (4.2)

The deconvolution of the gaussian kernel is

Kn (t) =
1
√

2π
exp

(
−1

2
t2
) [

1 − 0.1252

2h2
n

(t2 − 1)
]
. (4.3)

Finally, we calculated the standard deviation of β and variance for each model. The standard
deviation of β was 6,3468 × 10−4 in the NoME case and 5,9412 × 10−4 in the EIV case. The variance
was 1,6959 × 10−4 in the NoME case and 1,4860 × 10−4 in the EIV case. The results are plotted in
Figure 1. The data, NoME fit and EIV fit are represented by the solid line, dashed line and scatter
points.

5. Discussion

In this paper, we extracted the partially linear multivariate regression function and its parameters
from a model containing measurement errors. We assume that the parametric part X of the model
is measured exactly and the nonparametric part T contains measurement errors. We also derived the
asymptotic normality of the proposed estimator in the cases of ordinary-smooth and super-smooth
distributions of the measurement error. Our method considers that the measurement error U disturbs
the statistics of gx(T ) and gy(T ). In the analysis on the economic behavior of consumers, our method
handled contaminated data more effectively than the semiparametric method without measurement
errors.

Appendix:

To prove the theorem, we need the following lemmas. The lemmas themselves are proven in Liang
(2000).
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Lemma 1. Let V1, . . . ,Vn be independent random variables with 0 mean and sup j E|V j|r ≤ C < ∞,
where r ≥ 2. Further let {aki, k, i = 1, . . . , n} be a sequence of positive numbers such that supi,k≤n |aki| ≤
n−p1 for some 0 < p1 < 1 and

∑n
j=1 a ji = O(np2 ) for p2 ≥ max(0, 2/r − p1). Then we have

max
1≤i≤n

∣∣∣∣∣∣∣
n∑

k=1

akiVk

∣∣∣∣∣∣∣ = O
(
n−s log n

)
, s =

p1 − p2

2
a.s.

Lemma 2. Suppose that Assumptions 1 and 3 hold. Then

max
1≤i≤n

∣∣∣∣∣∣∣G j (Ti) −
n∑

k=1

ωn,h (Wi,Wk) G j (Tk)

∣∣∣∣∣∣∣ = o(1); j = 0, . . . , p,

where G0(·) = g(·) and Gl(·) = γl(·) for l = 1, . . . , p.

Lemma 3. Suppose that Assumptions 1–5 hold. Then

lim
n→∞

n−1 X̃T X̃ = B,

where B is given in Assumption 1.

Proof of Theorem 1:

β̂ =
(
X̃T X̃

)−1
X̃T Ỹ

=
(
X̃T X̃

)−1
X̃T (I − ω (w))

(
XTβ + g (t) + ε

)
= β +

(
X̃T X̃

)−1 [
X̃T g̃ + X̃T (I − ω (w)) ε

]
= β +

(
X̃T X̃

)−1 [
X̃T g̃ + X̃Tε − X̃Tω (w) ε

]
.

We then have

√
nvec

(
β̂ − β

)
= n

[
Im ⊗

(
X̃T X̃

)−1
] { 1
√

n

[
Im ⊗ X̃T

]
vec (g̃) +

1
√

n

[
Im ⊗ X̃T (I − ω (w))

]
vec (ε)

}
= A [C + D] .

Consider the matrix A = n[Im ⊗ (X̃T X̃)−1]. Lemma 3 means that A converges to B−1.
Consider the matrix C = (1/

√
n)[Im ⊗ X̃T ]vec(g̃).

X̃T g̃ =
[
Ṽ + γ̃

]T
g̃

=
[
(I − ω (w)) V + γ̃

]T g̃

= VT g̃ + γ̃T g̃ − ω (w) VT g̃

= F +H − J.

Taking r = 2,Vk = Vi j, a ji = g̃, and 1/4 ≤ p1 ≤ 1/3, p2 = 1 − p1 in Lemma 1, the jth column of the
matrix F = VT g̃ becomes ∣∣∣∣∣∣∣

n∑
i=1

Vi jg̃

∣∣∣∣∣∣∣ = O
(
n−

2p1−1
2 log n

)
.
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The jth column of the matrix H = γ̃T g̃ is
∑n

i=1 γ̃i jg̃. Using Abel’s inequality |∑n
i=1 γ̃i jg̃| ≤ n maxi≤n |g̃|

maxi≤n |γ̃i j| and setting G j = g and G j = γ j in Lemma 2, we get

max
i≤n
|g̃| = max

1≤i≤n

∣∣∣∣∣∣∣g (Ti) −
n∑

k=1

ωn,h (Wi,Wk) g (Tk)

∣∣∣∣∣∣∣ = o (1) , (A.1)

and

max
i≤n

∣∣∣γ̃ j

∣∣∣ = max
1≤i≤n

∣∣∣∣∣∣∣γ j (Ti) −
n∑

k=1

ωn,h (Wi,Wk) γ j (Tk)

∣∣∣∣∣∣∣ = o (1) , (A.2)

respectively. Therefore ∣∣∣∣∣∣∣
n∑

i=1

γ̃i jg̃

∣∣∣∣∣∣∣ ≤ o (1) .

Using Abel’s inequality, the jth column of the matrix J = ω(w)VT g̃ is given by∣∣∣∣∣∣∣
n∑

i=1

n∑
k=1

ωn,h (Wi,Wk) Vk jg̃ (Ti)

∣∣∣∣∣∣∣ ≤ n max
i≤n
|g̃|max

i≤n

∣∣∣∣∣∣∣
n∑

k=1

ωn,h (Wi,Wk) Vk j

∣∣∣∣∣∣∣ . (A.3)

Taking r = 3, Vk = Vk j, a ji = ωn,h(Wi,Wk), and p1 = 2/3, p2 = 0 in Lemma 1, we obtain

max
i≤n

∣∣∣∣∣∣∣
n∑

k=1

ωn,h (Wi,Wk) Vk j

∣∣∣∣∣∣∣ = O
(
n−

1
3 log n

)
. (A.4)

Using equations (A.3) and (A.4), we have∣∣∣∣∣∣∣
n∑

i=1

n∑
k=1

ωn,h (Wi,Wk) Vk jg̃

∣∣∣∣∣∣∣ ≤ o (1) .

By the above argument, the jth column of the matrix (1/
√

n)X̃T g̃ is given by (1/
√

n)
∑n

i=1 X̃T
i g̃ = o(1).

Consider the matrix D = (1/
√

n)[Im ⊗ X̃T (I − ω(w))]vec(ε). For a given arbitrary fixed vector
a ∈ Rpm/{0}, let cT = aT [Im ⊗ X̃T (I − ω(w))], where cT = (cT

1 , . . . , c
T
m) for each cT

r = (cr1, . . . , crn).
We need to show that

1
√

n
aT

[
Im ⊗ X̃T (I − ω (w))

]
vec (ε)

m→ Np×m

[
0, aT (Σ ⊗ B) a

]
. (A.5)

Here we have

aT
[
Im ⊗ X̃T (I − ω (w))

]
vec (ε) = cT (ε) =

m∑
r=1

cT
r εr =

n∑
i=1

oT
i ei,

where oT
i = (c1i, . . . , cmi). Using the central limit theorem and assuming independent error vectors,

we have E(oT
i ei) = 0 and Var(oT

i ei) = oT
i Σoi.
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Hence,

Var

 n∑
i=1

oT
i ei

 = aT
[
Σ ⊗ X̃T (I − ω (w)) (I − ω (w))T X̃

]
a.

Now let n→ ∞. Using Lemma 3, Equation (A.5) and Assumption 5, we have

n−1aT
[
Σ ⊗ X̃T (I − ω (w)) (I − ω (w))T X̃

]
a→ aT [Σ ⊗ B] a.

From the Lindeberg condition, we need to show that

max
1≤i≤n

c2
in

/ n∑
i=1

c2
in → 0 (A.6)

Equation (A.6) will hold if max1≤i≤n Var(oT
i ei) = o(n).

Let br ∈ Rm be a vector in which the rth component is 1, and all other components are 0. Then

max
1≤i≤n

∣∣∣oT
i Σoi

∣∣∣ ≤ ∥Σ∥2 max
1≤i≤n

m∑
r=1

c2
ri ≤ ∥Σ∥2 max

1≤i≤n

(
m max

1≤r≤m
c2

ri

)
= m ∥Σ∥2 max

1≤r≤m

(
max
1≤i≤n
|cri|

)2
= m ∥Σ∥2 max

1≤r≤m

∥∥∥∥(bT
r ⊗ In

)
c
∥∥∥∥2

∞

= m ∥Σ∥2 max
1≤r≤m

∥∥∥∥(bT
r ⊗ In

) [
Im ⊗ (I − ω (w))T X̃

]
a
∥∥∥∥2

∞

= m ∥Σ∥2 max
1≤r≤m

∥∥∥∥(bT
r ⊗ (I − ω (w))T X̃

)
a
∥∥∥∥2

∞

= m ∥Σ∥2 max
1≤r≤m

∥∥∥∥(bT
r ⊗ (I − ω (w))T X̃

)
a
∥∥∥∥2

∞

= m ∥Σ∥2 max
1≤r≤m

∥∥∥∥(I − ω (w))T X̃
(
bT

r ⊗ Ip

)
a
∥∥∥∥2

∞

= m ∥Σ∥2 max
1≤r≤m

∥∥∥(I − ω (w))T X̃kr

∥∥∥2
∞ ,

where kr = (bT
r ⊗ Ip)a ∈ Rp.∥∥∥(I − ω (w))T X̃kr

∥∥∥∞ = ∥∥∥(I − ω (w))T [
(I − ω (w)) V + γ̃

]
kr

∥∥∥∞
=

∥∥∥(I − ω (w))T (V + γ̃ − ω (w) V) kr

∥∥∥∞
≤

(
1 +

∥∥∥ω (w)T
∥∥∥∞) [∥Vkr∥∞ + ∥γ̃kr∥∞ + ∥ω (w) Vkr∥∞

]
.

From Assumption 5, ∥ω(w)T ∥∞ are uniformly bounded. Assuming that E|Vik |2+δ ≤ C < ∞ for δ ≥ 0
for all i and k, using the Markov inequality

P
(
max
1≤i≤n
|Vik | ≥ mn

)
≤

∑
i

P (|Vik | ≥ mn) ≤ nCm−2−δ
n

for any constant mn, and taking mn = n1/2 log n, we have

P (∥Vk∥∞ > mn)→ 0,
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meaning that ∥Vk∥∞ = op(n1/2) holds.
Using Equations (A.2) and (A.4), we respectively get ∥γ̃kr∥∞ = o(1) and ∥ω(w)Vkr∥∞ = O(n−1/3

log n).
Hence, by the Cramer-Wold device, we have

n−
1
2

[
Im ⊗ X̃T (I − ω (w))

]
vec (ε) m

−→Np×m (0,Σ ⊗ B) .

�
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