• Title/Summary/Keyword: Regional climate

Search Result 869, Processing Time 0.027 seconds

Future Climate Projection over East Asia Using ECHO-G/S (ECHO-G/S를 활용한 미래 동아시아 기후 전망)

  • Cha, Yu-Mi;Lee, Hyo-Shin;Moon, JaYeon;Kwon, Won-Tae;Boo, Kyong-On
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.55-68
    • /
    • 2007
  • Future climate changes over East Asia are projected by anthropogenic forcing of greenhouse gases and aerosols using ECHO-G/S (ECHAM4/HOPE-G). Climate simulation in the 21st century is conducted with three standard SRES scenarios (A1B, B1, and A2) and the model performance is assessed by the 20th Century (20C3M) experiment. From the present climate simulation (20C3M), the model reproduced reliable climate state in the most fields, however, cold bias in temperature and dry bias of summer in precipitation occurred. The intercomparison among models using Taylor diagram indicates that ECHO-G/S exhibits smaller mean bias and higher pattern correlation than other nine AOGCMs. Based on SRES scenarios, East Asia will experience warmer and wetter climate in the coming 21st century. Changes of geographical patterns from the present to the future are considerably similar through all the scenarios except for the magnitude difference. The temperature in winter and precipitation in summer show remarkable increase. In spite of the large uncertainty in simulating precipitation by regional scale, we found that the summer (winter) precipitation at eastern coast (north of $40^{\circ}N$) of East Asia has significantly increased. In the 21st century, the warming over the continents of East Asia showed much more increase than that over the ocean. Hence, more enhanced (weakened) land-sea thermal contrast over East Asia in summer (winter) will cause strong (weak) monsoon. In summer, the low pressure located in East Asia becomes deeper and the moisture from the south or southeast is transported more into the land. These result in increasing precipitation amount over East Asia, especially at the coastal region. In winter, the increase (decrease) of precipitation is accompanied by strengthening (weakening) of baroclinicity over the land (sea) of East Asia.

Variance Analysis of RCP4.5 and 8.5 Ensemble Climate Scenarios for Surface Temperature in South Korea (우리나라 상세 기후변화 시나리오의 지역별 기온 전망 범위 - RCP4.5, 8.5를 중심으로 -)

  • Han, Jihyun;Shim, Changsub;Kim, Jaeuk
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.103-115
    • /
    • 2018
  • The uncertainty of climate scenarios, as initial information, is one of the significant factors among uncertainties of climate change impacts and vulnerability assessments. In this sense, the quantification of the uncertainty of climate scenarios is essential to understanding these assessments of impacts and vulnerability for adaptation to climate change. Here we quantified the precision of surface temperature of ensemble scenarios (high resolution (1km) RCP4.5 and 8.5) provided by Korea Meteorological Administration, with spatiotemporal variation of the standard deviation of them. From 2021 to 2050, the annual increase rate of RCP8.5 was higher than that of RCP4.5 while the annual variation of RCP8.5 was lower than that of RCP4.5. The standard deviations of ensemble scenarios are higher in summer and winter, particularly in July and January, when the extreme weather events could occur. In general, the uncertainty of ensemble scenarios in summer were lower than those in winter. In spatial distribution, the standard deviation of ensemble scenarios in Seoul Metropolitan Area is relatively higher than other provinces, while that of Yeongnam area is lower than other provinces. In winter, the standard deviations of ensemble scenarios of RCP4.5 and 8.5 in January are higher than those of December. Especially, the standard deviation of ensemble scenarios is higher in the central regions including Gyeonggi, and Gangwon, where the mean surface temperature is lower than southern regions along with Chungbuk. Such differences in precisions of climate ensemble scenarios imply that those uncertainty information should be taken into account for the implementation of national climate change policy.

A study on the Effect of the Organizational Climate on the Job Satisfaction and Job Performance (기업의 조직분위기가 직무만족과 직무성과에 미치는 영향에 관한 연구)

  • Lee, Sun-Kyu;Kim, Young-Hyung;Lee, Ung-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.20-28
    • /
    • 2009
  • Member's perception toward organizational climate is an concept but generally it has been used in the meaning of Organizational climate by members, in an attempt to give an idea of what kind of meaning an organization can have from a psychological point of view to its members. This thesis insists Individual attitudes in the organization be changed characteristics of organization and individual who percepts the organization, one the basis of Organization climate effects individual attitudes directly and indirectly, and objective of the study is to verify the dependence of cause and effect between organization climate and job satisfaction and performance with manufacturing firms within Gumi National Industrial Complex. As a result, to promote the effectiveness and efficiency of the enterprise, firstly, we have to set an appropriate objectives within the organization, Secondly, the manager should recognize the controversial issue be solved in public. Lastly, the members should be inspired loyalty into their organization.

The Role of the Spatial Externalities of Irrigation on the Ricardian Model of Climate Change: Application to the Southwestern U.S. Counties

  • Bae, Jinwon;Dall'erba, Sandy
    • Asian Journal of Innovation and Policy
    • /
    • v.10 no.2
    • /
    • pp.212-235
    • /
    • 2021
  • In spite of the increasing popularity of the Ricardian model for the study of the impact of climate change on agriculture, there has been few attempts to examine the role of interregional spillovers in this framework and all of them rely on geographical proximity-based weighting schemes. We remedy to this gap by focusing on the spatial externalities of surface water flow used for irrigation purposes and demonstrate that farmland value, the usual dependent variable used in the Ricardian framework, is a function of the climate variables experienced locally and in the upstream locations. This novel approach is tested empirically on a spatial panel model estimated across the counties of the Southwest USA over 1997-2012. This region is one of the driest in the country, hence its agriculture relies heavily on irrigated surface water. The results highlight how the weather conditions in upstream counties significantly affect downstream agriculture, thus the actual impact of climate change on agriculture and subsequent adaptation policies cannot overlook the streamflow network anymore.

Elementary Students's Awareness and Educational Effects of the 'Sunchoen Climate School' Environmental Education (순천시 기후학교 환경교육에 대한 초등학생들의 인식 및 교육효과)

  • Kim, Dae-Hee;Ahn, Sam-Young;Kang, A-Reum;Yoo, Bo-Ram;Lee, Bok-Nam
    • Hwankyungkyoyuk
    • /
    • v.22 no.4
    • /
    • pp.66-80
    • /
    • 2009
  • While global warming and climate change have been issues with global implications for ecology and nature as well as for the economy, politics and social sector, Korean's climate change awareness has been reported to be low. This phenomenon can be attributed to the fact that there is neither a systematic and continuous educational program for climate change nor a system to implement and support it. Although environmental education traditionally has not been a center of focus in most schools, the move towards "green growth" in national policies are slowly influencing school education as well. Throughout the year 2009, Green Suncheon 21 has offered a program called 'Suncheon Climate School' designed for elementary schools and regional centers for underprivileged children. Program instructors were sent to schools and centers that requested such climate change education. The aim of this study is to evaluate the success of the program and to provide feedback on its impacts. According to the study, students' interests in climate change have increased after the climate change education, and students found the lectures to be informative and interesting. Students said that they became more aware of the serious consequences of global warming and climate change and found that such education is beneficial and should be available to a wider population. This study suggests that first, school teachers should be aware of climate change and support such educational programs to be a part of the regular curriculum. Second, the content and the level of the program should be designed in consideration of the corresponding school curriculum to make the subject relevant and accessible to students.

  • PDF

Behavior of Seepage and Seismic for the Deterioration Reservoir Using Numerical Analysis (수치해석에 의한 노후저수지의 침투 및 동적거동)

  • Park, Sung-Yong;Chang, Suk-Hyun;Lim, Hyun-Taek;Kim, Jung-Meyon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.81-90
    • /
    • 2016
  • It is significant to redevelop the deterioration reservoir through raising for countermeasure to climate change and Earthquake improvement of reservoir. This study aims to investigate the behavior of deterioration reservoir with poor-fabricated core subjected to raising water level and earthquake using numerical analysis. From the analysis results, water level raising and earthquakes induce crack and subsidences at the crown and the front side of deterioration reservoir. For the reinforcement of the deterioration reservoir is required appropriate measures method and raised method suitable, drainage and slope protection method judged to be necessary.

Recovery of Mass Changes in Antarctic Ice-Sheet based on the Regional Climate Model, RACMO (RACMO 기후 모델에 기반한 남극 빙상 질량 변동의 재현)

  • Eom, Jooyoung;Rim, Hyoungrea
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.147-157
    • /
    • 2020
  • Mass change in the Antarctic Ice Sheet(AIS) is the most important indicator of changes in Earth's climate system including global mean sea level rise that are largely affected by ongoing global warming. In this study, AIS mass variations are examined with satellite gravity data and outputs from a regional climate model. The analysis of gravity data shows that along the coastal region the Western AIS has experienced a continuous and significant ice loss while a slight increasing in the Eastern AIS during the study period (2002.08-2016.08). The temporal and spatial variations in ice mass changes are recovered by a regional climate model, but the recovered amplitudes are much smaller than those of observations. This under-estimation is remarkably resolved by modifying a base flow field for the ice discharge. The recovered estimates based on the ice-flow field can explain about 97% of the rate of mass change in observations before 2009. This implies that changes in ice flow dynamics along the coast line plays a pivotal role in regulating long-term budget of ice mass in AIS.

Development of Heat-Health Warning System Based on Regional Properties between Climate and Human Health (대도시 폭염의 기후-보건학적 특성에 기반한 고온건강경보시스템 개발)

  • Lee, Dae-Geun;Choi, Young-Jean;Kim, Kyu Rang;Byon, Jae-Young;Kalkstein, Laurence S.;Sheridan, Scott C.
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.109-120
    • /
    • 2010
  • Heat wave is a disaster, which increases morbidity and mortality in temperate regions. Climate model results indicate that both intensity and frequency of heat wave in the future will be increased. This study shows the result about relationship between excess mortality and offensive airmass in 7 metropolitan cities, and an operational Heat-Health Warning System (HHWS) in Korea. Using meteorological observations, the Spatial Synoptic Classification (SSC) has been used to classify each summer day from 1982 to 2007 into specific airmass categories for each city. Through the comparative study analysis of the daily airmass type and the corresponding daily mortality rate, Dry Tropical (DT), and Moist Tropical plus (MT+) were identified as the most offensive airmasses with the highest rates of mortality. Therefore, using the multiple linear regression, forecast algorithm was produced to predict the number of the excess deaths that will occur with each occurrence of the DT and MT+ days. Moreover, each excess death forecast algorithm was implemented for the system warning criteria based on the regional acclimatization differences. HHWS will give warnings to the city's residents under offensive weather situations which can lead to deterioration in public health, under the climate change.

Characteristics of Air Stagnation over the Korean Peninsula and Projection Using Regional Climate Model of HadGEM3-RA (한반도 대기정체의 특성 및 지역기후모델 HadGEM3-RA를 이용한 미래 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Kim, Tae-Jun;Byon, Jae-Young;Kim, Jin-Won;Kwon, Sang-Hoon;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.377-390
    • /
    • 2020
  • Not only emissions, but also atmospheric circulation is a key factor that affects local particulate matters (PM) concentrations in Korea through ventilation effects and transboundary transports. As part of the atmospheric circulation, air stagnation especially adversely affects local air quality due to weak ventilation. This study investigates the large-scale circulation related to air stagnation over Korea during winter and projects the climate change impacts on atmospheric patterns, using observed PM data, reanalysis and regional climate projections from HadGEM3-RA with Modified Korea Particulate matter Index. Results show that the stagnation affects the PM concentration, accompanied by pressure ridge at upper troposphere and weaken zonal pressure gradient at lower troposphere. Downscaling using HadGEM3-RA is found to yield Added-Value in the simulated low tropospheric winds. For projection of future stagnation, SSP5-8.5 and SSP1-2.6 (high and low emission) scenarios are used here. It has been found that the stagnation condition occurs more frequently by 11% under SSP5-8.5 and by 5% under SSP1-2.6 than in present-day climate and is most affected by changes in surface wind speed. The increase in the stagnation conditions is related to anticyclonic circulation anomaly at upper troposphere and weaken meridional pressure gradient at lower troposphere. Considering that the present East Asian winter monsoon is mainly affected by change in zonal pressure gradient, it is worth paying attention to this change in the meridional gradient. Our results suggest that future warming condition increase the frequency of air stagnation over Korea during winter with response of atmospheric circulation and its nonlinearity.

Generation of High Resolution Scenarios for Climate Change Impacts on Water Resources (II): Runoff Scenarios on Each Sub-basins (수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(II): 유역별 유출시나리오 구축)

  • Jung, Il-Won;Bae, Deg-Hyo;Im, Eun-Soon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.205-214
    • /
    • 2007
  • The objective of this study is to generate the regional scale runoff scenarios by using IPCC SRES A2 climate change scenario for analyzing the spatial variation of water resources in Korea. The PRMS model was adopted to simulate long-term stream discharge. To estimate the PRMS model parameters on each sub-basin, the streamflow data at 6 dam sites and Rosenbrock's scheme are used for model parameter calibration and those parameters are translated to ungauged catchments by regionalization method. The other 3 dam sites are selected for the verification of the adequateness of regionalized model parameters in ungagued catchments. The statistical results show that the simulated flows by using regionalized parameters well agree with observed ones. The generated runoff scenarios by climate change are compared with observed data on 4 dam sites for the reference period. The consequences show that the selection of climate station for generating climate scenario affects the reliability of climate scenario at sub-basin. The comparison results of the stream flows between the 30-year baseline period (1971-2000) and future 90-year (2001-2030, 2031-2060, 2061-2090) show that the long-term mean annual runoff in the Han River has increasing trend, while the Nakdong, the Gum, the Youngsan and the Sumjin Rivers have decreasing trend.