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Abstract   In spite of the increasing popularity of the Ricardian model for the study of 

the impact of climate change on agriculture, there has been few attempts to examine the 

role of interregional spillovers in this framework and all of them rely on geographical 

proximity-based weighting schemes. We remedy to this gap by focusing on the spatial 

externalities of surface water flow used for irrigation purposes and demonstrate that 

farmland value, the usual dependent variable used in the Ricardian framework, is a 

function of the climate variables experienced locally and in the upstream locations. This 

novel approach is tested empirically on a spatial panel model estimated across the 

counties of the Southwest USA over 1997-2012. This region is one of the driest in the 

country, hence its agriculture relies heavily on irrigated surface water. The results 

highlight how the weather conditions in upstream counties significantly affect 

downstream agriculture, thus the actual impact of climate change on agriculture and 

subsequent adaptation policies cannot overlook the streamflow network anymore. 

 

Keywords   Ricardian model, Spatial Externality, Streamflow network, Climate 

change  

 

 

I. Introduction 
  

A growing number of contributions use the Ricardian framework to assess the 

impact of climate change on agriculture (Schlenker et al., 2005, 2006; 

Deschênes and Greenstone, 2007; Dall’erba and Dominguez, 2016; Cai and 

Dall’erba, 2021). This concept, initiated by Mendelsohn et al. in 1994, offers the 

advantage of accounting explicitly for farmers’ adaptation to climate change. 
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Other studies provide indirect evidence of the potential for adaptation by 

showing that crop yields respond to market price changes; suggesting that as 

crop prices increase due to adverse climatic conditions in the future, farmers are 

likely to respond by changing production practices and increasing yields (Miao 

et al., 2016).  Significance evidence indicates that adaptation is already taking 

place among U.S. farmers and that it is not only limited to crop-producers (see, 

for instance, Schimmelpfennig et al., 1996). Examples of climate change 

adaptation mechanisms are, for instance, when farmers modify their quantity 

and mix of inputs and outputs, their tillage and management techniques, their 

crop-rotation, reduce their herd in dry years, shift to heat- and drought-resistant 

varieties, etc.  

However, in its basic version, the model assumes that changes in climate 

conditions in other localities do not affect local production techniques and 

choices. This assumption has become impossible to defend, considering that the 

literature has highlighted several sources of interregional dependence by now. 

They are, among others, ecological fallacy (Ezcuerra et al., 2008), 

communication between farmers (Polsky, 2004; Munshi, 2004; Kumar 2011), 

technology and investment spillovers (McCunn and Huffman 2000, 

Chatzopoulos and Lippert 2016) and trade (Dall’erba et al., 2021a). In the latter 

study, the authors estimate that the impact of a drought reduces crop yield locally, 

which is compensated by an increase in imports from other regions or countries, 

hence benefiting the latter areas. For instance, in Dall’erba et al. (2021a), the 

authors conclude that the capacity of interstate trade to mitigate the impact of 

climate change in the US is worth $14.5 billion. Several contributions concur 

that long-term climate changes will force the production of some agricultural 

products to shift to new localities, localities experiencing a new competitive 

advantage compared to current producers, hence indicating that the impact of 

climate change is not depleting of interregional externalities (Reilly and 

Hohmann, 1993; Costinot et al., 2016; Jones and Olken, 2010; Dallman, 2019; 

Dall’erba et al., 2021b).  

In this manuscript, we introduce the network of surface water flows as another 

form of interregional externality. To our knowledge, its role has never been 

studied in a Ricardian framework (see Dall’erba et al., 2021c, for a meta-

analysis).  Surface water is well known for the spatial externalities it generates 

due to its common resource properties. Surface water creates both stock 

externalities and pumping cost externalities. The former takes place when the 

water pumped by a farmer in period t reduces the stock of water available in 

period t+1 to all the other farmers located downstream. The latter arises when 

pumping in one location increases the cost of pumping in any other location due 

to the lower level of water available, more especially during the dry seasons 
(Gichuki, 2004). The same phenomena have been highlighted for groundwater 

(Provencher and Burt, 1993). The presence and enforcement of water rights may 
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modify the allocation of water across farmers (e.g., An and Eheart, 2006; Colby 

et al., 1993; Foran et al., 1995; Ghimire and Griffin, 2014; Wollmuth and Eheart, 

2000), but it does not remove the presence of the above externalities. 

Our contribution distinguishes itself from the previous Ricardian literature for 

various reasons. First, our approach provides us with more appropriate estimates 

and standard errors as the spatial econometric literature has now provided ample 

evidence that ignoring spillover effects present in a model leads to biased and 

inconsistent estimates (Anselin, 1988; Le Sage and Pace, 2009) even when 

traditional spatial fixed effects are included in the model (Baltagi et al., 2007; 

Kapoor et al., 2007; Anselin and Arribas-Bel, 2013). Second, while a growing 

number of Ricardian studies adopt a spatial econometric approach to account for 

interregional spillovers (Polsky, 2004; Seo, 2008; Lippert et al., 2009; Schlenker 

et al., 2006), all of these studies define the spatial weight matrix based on 

geographical proximity only. To our knowledge, the only exceptions are 

Dall’erba and Dominguez (2016) and Dall’erba et al. (2021a). While the latter 

uses a weight matrix based on the estimated value of trade flows derived from a 

gravity model, the former study weights spatial proximity by the origin-

destination relative level of Gross Value Added in agriculture. This approach 

allows the authors to reflect the spatial differences in the capacity to adopt 

innovation generated elsewhere (Jaffe et al., 1993). Here, we push the idea 

further by creating a spatial weighting scheme based on actual flow data that we 

consider more appropriate theoretically and empirically as they change over 

time, they are non-symmetric, and they provide a clear idea of directionality. 

Spatial econometric contributions that offer weight matrices that go beyond the 

usual geographical proximity are, among others and in a very different context, 

Eliste and Fredriksson (2004), Chen and Haynes (2015), Kang and Dall’erba 

(2015) and Comola and Prina (2020). Third, only a handful of Ricardian studies 

(Deschênes and Greenstone, 2007; Fezzi and Bateman, 2012; Massetti and 

Mendelhson, 2011; Dall’erba et al., 2021a) use a panel approach and benefit 

from its advantages in terms of estimate accuracy and control of omitted 

variables. 

Last but not least, our sample is also different from the traditional water 

externality literature that has often focused on a specific basin (such as Brozović 

et al., 2010) or a set of wells (e.g., Pfeiffer and Lin, 2012). In the current paper, 

we focus on the counties of the Southwestern part of the U.S. because increasing 

evidence indicates future climate conditions will very likely challenge their 

agriculture (Garfin et al., 2013; Dall’erba and Dominguez, 2016). Indeed, this 

region is not only the hottest and driest part of the country; it is also expected to 

become warmer in the future. As noted in Dall’erba and Dominguez (2016, p. 

47), “the projected climate conditions […] offer a future with more frequent 
heatwaves in summer, decreasing precipitation, more frequent precipitation 

extremes in winter, a decline in river flows and soil moisture and more severe 



Asian Journal of Innovation and Policy (2021) 10.2: 212-235 

 

215 

 

extremes (droughts and/or floods) in parts of the Southwest.” The sector that is 

the most likely to be affected by such changes is obviously agriculture because 

it represents a fairly large part of the land of each of the Southwestern states (35% 

of Arizona’s land, 47% of Colorado’s, 20% of Utahs’ and 55% of New Mexico’s) 

and because it is supported by a well-developed irrigation system composed of 

canals, reservoirs, dams and the well-known Central Arizona Project. These 

infrastructures allocate water across its many users, but it does not change the 

fact that surface water originates mainly in the Colorado Rockies and that 

agriculture (mostly crop production) consumes around 80% of the water 

available (Bae and Dall’erba, 2016). As a result, changes in the climate 

conditions in the Rockies is expected to impact more than the local agriculture.  

In this paper, we do not use surface water flows for the purpose of highlighting 

negative externalities in water availability (Gichuki, 2004; Brozović et al., 2010) 

or for advocating for the irrigation’s capacity to mitigate climate variation 

(Easterling, 1996; van der Velde et al., 2010; Tang et al., 2014). Instead, we use 

the identification, volume and directionality of these flows to demonstrate that 

changes in climate conditions in upstream places will affect water access, hence 

agriculture, downstream (Dall’erba and Dominguez, 2016). As a result, our 

approach has the potential to provide new insights on the magnitude and 

precision level of the marginal effects of the climate variables usually used in 

the Ricardian literature, generate new estimates on the expected impact of future 

climate conditions, and suggest adaptation strategies that encompass the 

counties that share the same streamflow. 

In order to tackle these issues, the following section offers a theoretical model 

of the expected impact of upstream climate conditions on downstream farmland 

value. The model clearly separates the marginal effects in the low- and the high-

irrigated counties as it is well-known irrigation acts as a substitute for the local 

(lack of) rainfall. The following section, section 3, starts with the description of 

the data and moves on to the surface water flow weighting scheme that will be 

used in section 4 for econometric purposes. The latter section reports and 

interprets the estimation results, while section 5 provides some concluding 

remarks. 

 

 

II. Theory and reduced-form model 
 

Following Schlenker et al. (2005), we can approximate the farmland value as 

the discounted sum of future profits in the equilibrium, i.e., 𝑉 = 𝜎𝜋∗, where 𝜎 

is the capitalization ratio and 𝜋∗ is the maximized profits in the equilibrium. 

For a representative farmland in irrigated county i, we model profit 𝜋 as a 

quadratic function of the inputs as in many standard agricultural economic 

studies, with the index i omitted for simplicity: 



Asian Journal of Innovation and Policy (2021) 10.2: 212-235 

 

216 

 

 

𝜋 = [𝒙′ 𝒛′ 𝑦] (

𝐴𝑥𝑥 𝐴𝑥𝑧 𝐴𝑥𝑦

𝐴𝑧𝑥 𝐴𝑧𝑧 𝐴𝑧𝑦

𝐴𝑦𝑥 𝐴𝑦𝑧 𝑎𝑦𝑦

) [

𝒙
𝒛
𝑦

] − 𝒑𝒛
′ 𝒛 − 𝑝𝑦𝑦 − 𝐶      (1) 

 

where 𝒙 is a n × 1 vector of exogeneous inputs (say precipitation), z is a m × 

1 vector of endogenous inputs (fertilizers), and y is endogenous irrigation water 

demand. A is a matrix of production coefficients that characterize the technology. 

𝒑𝒛 is a m × 1 vector of input prices of fertilizers and 𝑝𝑦 is the input price of 

irrigation water. Since the input prices of fertilizers are very similar across 

different areas of the country and we are interested solely in the water price, we 

assume that 𝒑𝒛 is given and is independent of the variation of water price. 

Following Mendelsohn et al. (1994) and Schlenker et al. (2005), we also assume 

that the price of inputs x is constant and is normalized to 1. The variables 𝒙, z 

and y are measured in per acre unit, therefore 𝜋 represents the profits per acre. 

The first order condition of profit-maximization assumes that the farmer will 

find how much fertilizer and water is to be used as follows: 

 

𝑧∗ = 𝐴𝑧𝑧
−1 (

𝒑𝒛

2
− 𝐴𝑧𝑥𝒙 − 𝐴𝑧𝑦𝑦∗)   (2) 

𝑦∗ = 𝑎𝑦𝑦
−1 (

𝑝𝑦

2
− 𝐴𝑦𝑥𝒙 − 𝐴𝑦𝑧𝑧∗)  (3) 

 

The second-order condition requires that the Hessian matrix of 𝜋 is negative 

semidefinite at the optimal point, which implies:  

 

𝑎𝑦𝑦 − 𝐴𝑦𝑧𝐴𝑧𝑧
−1𝐴𝑧𝑦 ≤ 0             (4) 

 

Combining (2) and (3), we find the optimal demand of y and z as: 

 

𝑦∗(𝑝𝑦, 𝒑𝒛, 𝒙) = Γ𝑦
−1 [

𝑝𝑦

2
− (𝐴𝑦𝑥 − 𝐴𝑦𝑧𝐴𝑧𝑧

−1𝐴𝑧𝑥)𝒙 − 𝐴𝑦𝑧𝐴𝑧𝑧
−1 𝒑𝒛

2
]    (5) 

𝑧∗(𝑝𝑦, 𝒑𝒛, 𝒙) = Γ𝑧
−1 [

𝒑𝒛

2
− (𝐴𝑧𝑥 − 𝐴𝑧𝑦𝑎𝑦𝑦

−1𝐴𝑦𝑥)𝒙 − 𝐴𝑧𝑦𝑎𝑦𝑦
−1 𝑝𝑦

2
]     (6) 

where Γ𝑦 = 𝑎𝑦𝑦−𝐴𝑦𝑧𝐴𝑧𝑧
−1𝐴𝑧𝑦 and Γ𝑧 = 𝐴𝑧𝑧−𝐴𝑧𝑦𝑎𝑦𝑦

−1𝐴𝑦𝑧. 

 

Differentiating 𝑦∗
 with respect to 𝑝𝑦,  we have: 

𝜕𝑦∗(𝑝𝑦,𝒑𝒛,𝒙)

𝜕𝑝𝑦
=

1

2
Γ𝑦

−1 ≤ 0  

because the second order condition in (4) implies Γ𝑦
−1 ≤ 0. It corresponds to 

the fact that 𝜋∗ is convex. According to (5) and (6), we can re-write 𝜋∗as: 
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𝜋∗ = 𝒙′𝐴𝑥𝑥𝒙 − 𝒙′ (𝐴𝑥𝑧Γ
𝑧

−1

𝐴𝑧𝑥 + 𝐴𝑥𝑦Γ
𝑦

−1

𝐴𝑦𝑥 − 𝐴𝑥𝑦𝐴1𝐴𝑧𝑥 − 𝐴𝑥𝑧𝐴2𝐴𝑦𝑥) 𝒙 +

𝒑𝒛
′ (Γ

𝑧

−1

𝐴𝑧𝑥 − 𝐴2𝐴𝑦𝑥) 𝒙 + 𝑝𝑦 (Γ
𝑦

−1

𝐴𝑦𝑥 − 𝐴1𝐴𝑧𝑥) 𝒙 −
1

4
(𝒑𝒛

′Γ
𝑧

−1

𝒑𝒛 + Γ
𝑦

−1

𝑝𝑦
2 −

𝑝𝑦𝐴1𝒑𝒛 − 𝒑𝒛
′ 𝐴2𝑝𝑦) − 𝐶    (7) 

 

where 𝐴1 = Γ𝑦
−1𝐴𝑦𝑧𝐴𝑧𝑧

−1; 𝐴2 = Γ𝑧
−1𝐴𝑧𝑦𝑎𝑦𝑦

−1. 

 

The Envelope Theorem implies that 
𝜕𝜋∗

𝜕𝑝𝑦
= −𝑦∗ , which implies that the 

marginal effect of an increase in 𝑝𝑦  increases the costs of agricultural 

production after taking the substitution effect into account, as shown by 𝐴𝑦, but 

it also influences the profits by altering the marginal effect of the climatic 

variables on agricultural production. For example, rainfall becomes more 

important to crop growth when the cost of irrigated water rises, while the lack 

of precipitation is less harmful to the farmers with access to cheap water.  

While the water needed for agricultural production purposes in a county is 

rather inelastic, the supply of surface stream water varies from year to year 

because, for most counties, the stream originates in an upstream county and 

relies heavily on its local climate conditions. For instance, about 95 percent of 

the water needed for cotton production in California is obtained from either 

groundwater or from surface water of which source is more than 500 miles away 

(Schlenker et al., 2005). As such, we define the irrigation surface water available 

in county i as: 

 

𝑌𝑖 = 𝑔𝑖(𝑞𝑜, 𝑞𝑖)        (8) 

 

where 𝑞𝑜 = 𝑞(∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗≠𝑖 ) defines the surface water originating from outside 

county i. 𝑥𝑗 stands for the climatic variables of counties j identified as being 

located upstream of county i by the interregional stream flow weight 

matrix 𝑤𝑖𝑗  . 𝑞𝑖  = 𝑞(𝑥𝑖) stands for the surface water supply that originates 

from county i itself, hence it is a function of local climate conditions. Even 

though water is provided from the surface water system, restrictions on the 

quantity of water that can be pumped are often imposed on farmers (Schlenker 

et al., 2005), therefore a function 𝑔𝑖(. ) is used to characterize the contractual 

and legal water rights as well as any specific water policies that may vary across 

different regions. We assume that the water available in county i increases with 

the outside water supply: 

 

 𝑞𝑜= 
𝜕𝑌𝑖

𝜕𝑞𝑜
> 0. 
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In the equilibrium, the input price of irrigation water is determined by equating 

demand and supply: 

 

𝑁𝑦𝑖
∗(𝑝𝑦𝑖

, 𝒑𝒛, 𝑥𝑖) = 𝑌𝑖  (9) 

 

where N stands for the quantity of farmland within county i that requires 

irrigation. 

By solving (9), we obtain the equilibrium price of water for county i 

represented by 𝑝𝑦𝑖

∗  : 

 

𝑝𝑦𝑖

∗ = 2(Γ𝑦
𝑌𝑖

𝑁
+ (𝐴𝑦𝑥 − 𝐴𝑦𝑧𝐴𝑧𝑧

−1𝐴𝑧𝑥)𝒙 + 𝐴𝑦𝑧𝐴𝑧𝑧
−1 𝒑𝒛

2
)      (10) 

 

From (10), it can be observed that 
𝜕𝑝𝑦𝑖

∗

𝜕𝑌𝑖
=

𝜕Γ𝑦

𝑁
 <0 , indicating that the price of 

water rises as water availability decreases. This corresponds to the expected 

water pricing mechanism as a water district must raise the water price in years 

of short supply so that it can cover the fixed costs of operating and maintaining 

the irrigation system (Wichelns, 2010).  

In order to illustrate the role of the spatial externalities of irrigated surface 

water 𝑞𝑜 on farmland value, we investigate how a change in the former affects 

the equilibrium profits and thus the farmland value of county i : 

 

𝜕𝑉𝑖

𝜕𝑞𝑜
= 𝜎 (

𝜕𝜋𝑖
∗

𝜕𝑝𝑦𝑖

|
𝑝𝑦𝑖

=𝑝𝑦𝑖
∗

𝜕𝑝𝑦𝑖
∗

𝜕𝑌𝑖

𝜕𝑌𝑖

𝜕𝑞𝑜
) ≥ 0  (11) 

 

The first term of (11) results from the Envelope Theorem where 
𝜕𝜋∗

𝜕𝑝𝑦𝑖

= −𝑦𝑖
∗ is 

negative. The second partial derivative has the form 
2Γ𝑦

𝑁
 that is non-positive 

according to (4). The last term is positive by assumption (8). Since 𝑞𝑜  is a 

function of the upstream climate conditions ∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗≠𝑖 , then whenever the 

climate variables in 𝑗 ≠ 𝑖 increase 𝑞𝑜 in county i, the farmland value of county 

i rises.  

  

 

III. Data and streamflow weight matrix 

 

1. Data  
 

We apply our approach to the 138 counties of Arizona, New Mexico, 

Colorado and Utah. Thirteen of the counties that compose this group need to be 

removed for different reasons: five of them have no or very little agricultural 
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activity as indicated by the absence of employment in agriculture1. In addition, 

we remove eight urban counties2 because the literature has shown that their 

farmland value is not necessarily driven by agricultural productivity but by the 

option of developing land for further urban uses (Plantinga et al., 2002; 

Schlenker et al., 2006). They are identified as counties where the population 

density is above 400 inhabitants per square mile in 2007. This sample was used 

by Dall’erba and Dominguez (2016) but in a cross-section setting. We revisit it 

in our panel data model to provide more efficient estimates, include spatial 

fixed-effects that control for omitted variables, and model the spatial 

externalities of irrigation in a structure that is closer to the actual interregional 

flows of surface water.   

Our dependent variable is farmland value per acre from the Census of 

Agriculture, USDA every five years from 1993 to 2012. In general, it is 

evaluated that Farmland values display similar topographic, soil conditions and 

climate variables, hence known to be comparable across neighboring areas 

(Dall’erba and Dominguez, 2016).  

Our independent variables are composed of three groups traditionally chosen 

in Ricardian studies (Mendelsohn et al., 1994; Deschênes and Greenstone, 2007; 

Dall’erba and Dominguez, 2016): a set of socioeconomic variables, a set of 

climate conditions and a couple of soil conditions. All the economic variables 

are converted to constant 2012 US dollars using the corresponding Consumer 

Price Index. Human intervention, or the level of demand, is captured through 

per capita income and population density. We also include elements 

representing the production process. Based on previous studies (e.g., Dall’erba 

and Dominguez, 2016), we include irrigation and fertilizers as they influence the 

farmland value (McCunn and Huffman, 2000; Polsky 2004). More precisely, 

this study will rely on the percentage of irrigated farmland from USDA’s 

National Resources Inventory and fertilizer use of which data are also from 

USDA.  

The climate variables are obtained from NARR (North American Regional 

Reanalysis), which is used as the proxy for observations as it assimilates 

observed precipitation and temperature. These additional variables are also 

available in the downscaled climate simulations. NARR data are available for 

the conterminous US and are at a 32-km spatial resolution. We use standard 

interpolation techniques and area-weighted averaging (available in, for example, 

ArcGIS software) to obtain unique values over each county. The high spatial 

resolution of these data allows us to obtain accurate estimates of climate 

                                        
1 San Juan, Gilpin, Clear Creek and Lake in Colorado as well as Los Alamos in New Mexico. 
2  Davis, Salt Lake in Utah; Maricopa in Arizona; Bernalillo in New Mexico; Boulder, 

Jefferson, Denver and Arapahoe in Colorado. 
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variables within each county for all the US counties. Because of the high degree 

of multicollinearity among the climate variables, we are not able to include all 

the seasons in our analysis. As a result, we include the summer and winter 

precipitation and temperature. As indicated in Dall’erba and Dominguez (2016), 

most of the precipitation takes place during these two seasons in the Southwest. 

Furthermore, most crops available in that part of the country grow during 

summer. We also include the squared value of precipitation as a way of testing 

the nonlinearity of its marginal effect. We do not do the same with temperature 

because of a high level of multicollinearity.  

Finally, we include an index of soil erodibility (K-factor in the Universal Soil 

Loss Equation) and of permeability from USDA’s General Soil Map 

(STATSGO2) National Resource Inventory as in Mendelsohn et al. (1994). 

These two factors have been chosen among other soil characteristics because 

erosion is common in the Southwest due to low annual rainfall and poor soil 

water storage capacity. The latter element is captured through the permeability 

measure.  

The basic statistics associated with all these variables are reported in Table 1 

below. More precisely, we report these values for the groups above and below 

the median elevation value (1.87 km). Following Dall’erba and Dominguez 

(2016), our idea is to verify if the marginal effects of the lowland counties (in 

southern Arizona, southern New Mexico, and the eastern part of Colorado) 

differ from the ones of the highland counties (in western Colorado, northern 

New Mexico, northern Arizona and the Northeastern part of Utah).  
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Table 1 Basic statistics of climate and soil variables 
 High elevation counties (>1.87km) Low elevation counties(<1.87km) 

Variable Mean Std. Dev Min Max Mean Std. Dev Min Max 

Farmland value 
($/acre) 

1,937 1,435.7 145.8 1,1520 1,256 1,649.5 197.8 1,2680 

Per capita 
Income ($) 

29,478 11,688.5 11,859 88,163 26,337 8,433.6 12,539 63,434 

Density 
(person/square 

mile) 
25.238 54.456 0.455 354.049 24.365 59.155 0.329 388.594 

Share of 
irrigated land in 

farm 
0.654 0.267 0.045 0.9857 0.371 0.255 0.004 1 

Fertilizers 
($/acre) 

5.072 9.829 0.006 62.778 12.255 51.8 0.005 607.176 

Summer 
precipitation 

(mm/day) 
1.160 0.541 0.224 2.721 1.295 0.728 0.071 3.297 

Winter 
precipitation 

(mm/day) 
0.832 0.525 0.069 2.384 0.571 0.400 0.031 2.022 

Summer 
temperature(°C) 

21.48 4.219 11.68 29.77 29.43 2.765 19.20 36.14 

Winter 
temperature(°C) 

-6.256 3.133 -11.533 2.492 0.626 4.513 -7.103 12.096 

Squared 
summer 

precipitation 
1.638 1.463 0.050 7.402 2.204 2.315 0.005 10.869 

Squared winter 
precipitation 

0.966 1.097 0.005 5.682 0.486 0.683 0.001 4.087 

K-ratio 
(erodibility) 

0.190 0.049 0.093 0.300 0.231 0.048 0.119 0.327 

Awc-ratio 
(permeability) 

0.119 0.018 0.075 0.152 0.125 0.032 0.049 0.187 

 

2. Stream flow weight matrix using STARS toolset  
 

We use the spatial tools for the Analysis of River Systems (STARS) ArcGIS 

custom toolset developed by Peterson et al. (2007) to generate the spatial weight 

matrix in conjunction with the linkage of river streams. In the STARs toolset, a 

series of geoprocessing tools are provided to build the spatial data required for 

spatial modeling: the Watershed attributes, the Segment PI, the Additive 

Function and Upstream distance (Peterson and Hoef, 2010; Peterson and Ver 

Hoef, 2014). Figure 1 shows the dendric system of natural stream lines and more 

downstream edges are expressed with thicker lines based on the Strahler’s 
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stream order. Man-made canals are also considered to build our weight matrix, 

as shown in Figure 1.  

 

 
Figure 1 Stream flow connectivity in the four states in the US Southwest  

Note: The stream lines are categorized by Strahler’s stream order, and it increases 
numbers toward downstream. 

 

Figure 2 displays the directionality of each stream edge. STARS checks the 

network topology for each node, and converging stream nodes should be 

modified before the analysis. Converging stream node error occurs at the point 

of the downstream node when more than two edges converge but do not flow 

into another downstream edge.  

 

 
Figure 2 Flow network and directionality 

Note: Regarding the stream flow direction, converging streams are manually removed 
before GIS analysis. 
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The first step to weight for the tail-up model consists in generating the PI, 

which is defined as the influence of an upstream location on a downstream 

location. To begin, each stream segment is represented as a directed line with 

nodes in ArcGIS. Those stream segments are identified as 𝑗 = 1, 2, 3, … . 𝑛; 

therefore, each location of a segment is denoted as 𝑥𝑗. The PI for each segment 

is the proportion of its cumulative watershed area for the total incoming area 

(Peterson et al., 2007). The watershed area of edge i is calculated by the Reach 

Contribution Areas (RCAs) function that builds a one-to-one relationship 

between edges and RCAs. The PI should range between 0 and 1 and always sum 

to 1 at the stream confluences. The PI is calculated by equation (12), where 𝑊𝑖 

is the watershed area of edge i, and 𝑊𝑗 is the watershed area of edge j. 

 

𝜔𝑖= 
𝑊𝑖

𝑊𝑖+𝑊𝑗
     (12) 

 

 

 
Figure 3 The segment Proportional Influence (PI) calculation 

 

In the second step, the segment PIs are used to calculate the segment additive 

function value (AFV). We create the AFV for a given edge 𝑗 that is defined to 

be equal to the value of PI of 𝑗 th edge along the stream path downstream 

(Peterson and Ver Hoef, 2014). The most downstream segment is set as 1 in the 

network in the calculation of the AFV. It is considered that there exists a non-

symmetric correlation between flow-connected downstream and upstream sites. 

An example of the calculation of the AFV for a site located on the edge is 

illustrated in Figure 4.  

 

𝐴𝐹𝑉𝑗=∏ 𝜔𝐷𝑗,𝑚

𝑛
𝑚=1       (13) 

 

Edge i Edge j 

Edge h 

𝑊𝑖  𝑊𝑗  
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If site 𝑆1 is located on edge F, 
 

 𝜔𝑖= 
𝑊𝑖

𝑊𝑖+𝑊𝑗
 

 

𝜔𝐹 =  
𝑊𝐹

𝑊𝐹+𝑊𝐸
 

 
𝐷[𝐹] = [F, G, K] =  

            [𝐷𝐹,1, 𝐷𝐹,2, 𝐷𝐹,3] 

 
𝐴𝐹𝑉𝑆1

= 𝐴𝐹𝑉𝐹 = ∏ 𝜔𝐷𝐹,𝑚
𝑛
𝑚=1   

          = 𝜔𝐹 × 𝜔𝐺 × 𝜔𝐾 

Figure 4 Calculating the AFV for a site on each edge 

 

In the final step needed to generate a valid flow-connected weight matrix, the 

weighted stream flow matrix is built at the county level. Along the path 

downstream, the downstream counties are affected by upstream counties. If an 

edge 𝑗 is lying across the county border, we assume that upstream segment 

group A inside county 𝑁𝑖 affects county 𝑁𝑗 directly as well as 𝑁𝑘 indirectly 

(see Figure 4). The indirect impact diminishes in proportion to the distance 

between the upstream and the downstream counties. To account for the impact 

of segment group A, the accumulated value of RCAs is captured in edge 𝑗. Note 

that the accumulated value is not the measure of stream flow quantity but the 

topological area that captures rainfalls. The covariance between two flow-

connected counties, 𝑁𝑖  𝑎𝑛𝑑 𝑁𝑗 , could be represented as in equation (14), 

where ℎ  is the hydrologic distance between two counties, and ∑ 𝑊𝑘
𝑛
𝑘=1  

represents the spatial weights based on RCAs accumulation.  

 

C (𝑁𝑖 , 𝑁𝑗 |θ) =  

{
         0        if Ni and Nj are flow − unconnected

∑ 𝑊𝑘/(𝑑|𝜃)𝑛
𝑘=1  if Ni and Nj are flow − connected

     (14) 

 

Because the value of RCAs accumulation on the downstream county becomes 

larger than on the upstream county, we input more weight toward the 

downstream counties by considering the topological concentration of stream 

flow. The distance between neighboring counties 𝑁𝑖  𝑎𝑛𝑑 𝑁𝑗 is given the value 

of 1 to impose a higher connectivity weight. The final weight matrix for the 138 

counties is calculated as follows: 
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[

𝑐11 × 𝐴𝐹𝑉11 𝑐12 × 𝐴𝐹𝑉12 𝑐1𝑛 × 𝐴𝐹𝑉1𝑛

𝑐21 × 𝐴𝐹𝑉21 𝑐22 × 𝐴𝐹𝑉22 𝑐2𝑛 × 𝐴𝐹𝑉2𝑛…
𝑐𝑛1 × 𝐴𝐹𝑉𝑛1

…
𝑐𝑛2 × 𝐴𝐹𝑉𝑛2

…
𝑐𝑛𝑛 × 𝐴𝐹𝑉𝑛𝑛

]  (15) 

 

 
Figure 5 Flow-connectivity at a county level 

 

 

Ⅳ. Estimation results 

 
Table 2 below starts with an OLS estimation of a pooled panel data model 

with time- and state-fixed effects3 that can be written as follows:  

 

y𝑖𝑗𝑡 = 𝛼 + 𝑋𝑖𝑗𝑡
′ 𝛽 + 𝑍𝑖𝑗

′ 𝛿 + 𝜇𝑗 + 𝜀𝑡 + 𝑢𝑖𝑗𝑡 with 𝑢𝑖𝑗𝑡~𝑁(0, 𝜎𝑢
2)     (16) 

 

                                        
3 In order to avoid perfect multicollinearity with the general intercept, Utah and the year 1997 

have been arbitrarily chosen as the base State and year respectively. Other pooled panel data 

model specifications were estimated (without fixed effect at all and with one type only), but a 

likelihood ratio test confirmed they led to lower log likelihood values. We also tried a county 

fixed effect model since a significant Hausman test (p-value=0.000) indicates it outperforms 

the random effect model. However, model (15) still outperforms the fixed effect model. 

Complete results available from the authors upon request. 



Asian Journal of Innovation and Policy (2021) 10.2: 212-235 

 

226 

 

where 𝑖 = 1, 2, …n stands for the counties, 𝑗 = 1, 2, 3, 4 denotes the states, 

and 𝑡 = 1, 2, …T  is the time index. X is a matrix of space- and time-variant 

socio-economic and climate controls, while Z is a matrix of space-variant soil 

conditions. 𝜇𝑗  and 𝜀𝑡  are state- and time-fixed effects, respectively. They 

control for unobservable factors that might confound the marginal effect of 

climate. The year fixed effect captures the time trend, such as changes in 

commodity prices, weather shocks, technological innovations, and policy 

shocks that are common to the entire sample. State-fixed effects, on the other 

hand, control for time-invariant elements such as soil characteristics and climate 

conditions. Finally, 𝑢𝑖𝑗𝑡 denotes the error terms with the usual i.i.d. properties.  

Diagnostic tests indicate the significant presence of remaining 

heteroscedasticity (BP test shows a p-value=0.000) and serial correlation 

(Breusch-Godfrey test has a p-value=0.000). On the other hand, there is no 

spatial error autocorrelation (Moran’s I test = 0.161) probably because the state-

fixed effects already control for dependence across the counties of the same state 

and dependence across counties of different states is limited. As a result, the 

standard errors presented are robust to both heteroskedasticity and serial-

correlation. 

The results on the socio-economic variables meet the expectations of the 

Ricardian literature in general and of the cross-sectional results of Dall’erba and 

Dominguez (2016) in particular. Indeed, per capita income (0.024, p-value = 

0.076) and density (8.174, p-value < 0.000) have a significant impact on 

farmland values at the 10% level (Plantinga et al., 2002). Denser areas have a 

higher propensity to buy farmland for higher-valued activities. Moreover, 

irrigation (1,341.400, p-value < 0.000) and fertilizer (16.867, p-value < 0.000) 

are also found to act positively on farmland values, which confirms our 

expectations too. 

When it comes to the weather conditions, the results differ by season. Summer 

precipitation (-919.310, p-value = 0.032) and temperature (-177.780, p-value < 

0.000) act negatively on farmland value. Garfin et al. (2013) have demonstrated 

that intense precipitation due to summer thunderstorms leads to floods, property 

damages and even casualties in the Southwest. Summer is also the period when 

heat waves take place (e.g., the 2013 heat waves reached a record 49℃ in 

Arizona). On the other hand, winter precipitation (1,361.2, p-value = 0.007) and 

temperature (129.000, p-value < 0.000) display a positive impact on farmland 

values. The reason could be because “winter precipitation contributes to 

building a snowpack that provides a natural and reliable water reservoir for the 

region throughout the rest of the year” (Dall’erba and Dominguez (2016, p. 58). 

We also find that, for both seasons, there is a non-linear effect of precipitation 

as indicated by the significant coefficient associated with their squared value.  
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Finally, we find that erodibility (-5,212.10, p=value = 0.001) reduces farmland 

values while permeability (3,723.700, p-value = 0.173) increases it. These 

results were expected as erosion and permeability act in opposite ways on 

productivity. Erosion is known to be a problem in the arid or semi-arid parts of 

the Southwest, where the vegetative cover is too thin due to low annual 

precipitation and poor soil water storage capacity. While, in general, the soil in 

the Southwest is less permeable than in the rest of the country, the level of 

permeability differs across its areas (see table 1). Permeability promotes root 

development and water movement in the soil, hence its positive impact.    

One assumption that has not been tested so far is the presence of heterogeneity 

in the sample. As indicated in Dall’erba and Dominguez (2016) and Garfin et al. 

(2013), the Southwest can be split between highland and lowland counties 

because of the difference in climate and ecosystems that go with elevation. 

Furthermore, it is expected that the marginal effect of the weather variables 

varies with elevation. Zhang et al. (2013) show it is the case for extreme weather 

events. Such as model can be written as follows:  

 
y𝑖𝑗𝑡 = 𝛼𝐿 + 𝛼𝐻 + 𝑋𝑖𝑗𝑡

′ 𝛽𝐿 + 𝑋𝑖𝑗𝑡
′ 𝛽𝐻 + 𝑍𝑖𝑗

′ 𝛿𝐿+𝑍𝑖𝑗
′ 𝛿𝐻 + 𝜇𝑗 + 𝜀𝑡 + 𝑢𝑖𝑗𝑡   

with 𝑢𝑖𝑗𝑡~𝑁(0, 𝜎𝑢
2)   (17) 

 

where the subscripts L and H stand for a dummy variable for the lowland and 

the highland counties, respectively. The fixed effects and disturbance terms are 

the same as in equation (18). 

The Chow test result, reported in the third column of Table 2, confirms the 

significant presence of two sub-groups (p-value=0.000). Furthermore, a 

likelihood ratio test indicates this model outperforms the previous one in terms 

of (log) likelihood value. Due to the significant results (p-value < 0.000) of the 

BP and BG tests (but not Moran’s I), the standard errors are again 

heteroscedasticity- and serial correlation consistent.  

While most of the socio-economic variables display results that are consistent 

with the previous model, the marginal effect of income has become non-

significant. One possible reason is offered in Dall’erba and Dominguez (2016, 

p.55) who claim: “in the Southwest the need for land to be converted to urban 

purposes is largely limited to the few existing urban centers”. We also note that 

the role of precipitation is significant in the lowland counties only. We 

hypothesize that it is because they are drier, and their rainfall is delivered 

through extreme events more often than in the highland counties. On the other 

hand, agricultural productivity seems sensitive to both summer (-256.73, p-

value < 0.000) and winter temperature (-219.44, p-value < 0.000)  in the 

highland counties only. The lowland counties are affected by winter temperature 

(103.240, p-value < 0.000) only and, not surprisingly, when the latter goes down, 

so does their farmland value. The non-linear effect of precipitation is confirmed. 
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Furthermore, we note that the influence of erodibility (-9,527.20, p-value < 

0.000) and permeability (9,699.00, p-value < 0.000) is significant in the lowland 

counties only. They display higher mean, maximum value, and standard 

deviation in these variables than their highland counterparts. The pooled OLS 

failed to capture this heterogeneity as permeability has no significant influence 

on farmland value in this model.    

Finally, our last model consists of testing if the weather conditions in the 

upstream counties affect farmland values in the downstream counties. For that 

purpose, we estimate the following model where the spatial lag of the weather 

conditions and of irrigation (noted W4) is based on the surface water irrigation 

flows depicted in section 3.2.  

 
y𝑖𝑗𝑡 = 𝛼𝐿 + 𝛼𝐻 + 𝑋𝑖𝑗𝑡

′ 𝛽𝐿 + 𝑋𝑖𝑗𝑡
′ 𝛽𝐻 + 𝑍𝑖𝑗

′ 𝛿𝐿+𝑍𝑖𝑗
′ 𝛿𝐻 + 𝑊𝑖𝑗𝑡

′ 𝜃𝐿+𝑊𝑖𝑗𝑡
′ 𝜃𝐻 + 𝑣𝑖𝑗𝑡 

with 𝑣𝑖𝑗𝑡 = 𝜇𝑗 + 𝜀𝑡 + 𝑢𝑖𝑗𝑡 and 𝑢𝑖𝑗𝑡~𝑁(0, 𝜎𝑢
2)    (18) 

 

A significant Chow test and LR test indicate that structural instability, like in 

model (17), is still present but that model (18) outperforms model (17) in terms 

of (log) likelihood value, respectively. The direct effects in each group display 

a fairly similar magnitude and precision and, more importantly, the exact same 

sign as in model (17). However, one could claim that model (17) suffers from a 

missing variable bias as both the theory (see section 2) and empirical evidence 

indicate that the weather in upstream locations influences the availability of 

water for irrigation, hence farmland value, in downstream locations. Our 

estimation results indicate that these spillovers are significant in the lowland 

counties only, which makes sense since they are the downstream counties too.  

Interestingly, we find that winter precipitation, summer temperature, and 

winter temperature in the counties upstream of the lowland counties display a 

significant impact on farmland value in lowland counties. As expected, we find 

that the marginal effect of these spillovers displays the same sign as the one of 

the direct effect. It also means that the overall marginal effect of any of these 

covariates is not 𝜕𝑦 𝜕𝑥⁄ = 𝛽𝐿  any more but 𝜕𝑦 𝜕𝑥⁄ = 𝛽𝐿 + 𝜃𝐿 .  For instance, 

while model (17) indicates that, across lowland counties, one additional mm of 

rainfall per day increases farmland value by $ 1,363 per acre, model (18) 

indicates that the increase is actually $ 1,383. In fact, 90% of the increase 

($ 1,248) comes from precipitation falling in the county itself, while the 

remaining 10% ($ 134.8) comes from additional rainfall in the upstream 

counties that combine both lowland and highland counties. Similarly, we find 

that the effect of one additional °C in winter does not increase farmland 

                                        
4 The surface water flow matrix is globally standardized (ij link divided by the sum over all 

links) so that we do not modify the internal neighborhood structure (Kelejian and Prucha, 

2010). 
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value/acre by $ 103 as predicted by model (17) but by $ 84. 72% of it is due to 

an increase in local temperature, while the rest comes from upstream counties. 

When it comes to summer temperature, the detrimental effect is only due to 

changes in upstream locations. In sum, our results show that ignoring such 

spillovers leads to erroneous conclusions about the extent and spatial origin of 

the marginal effects of the weather conditions. 

The reported p-values are based on heteroskedasticity (White) and serial 

correlation-robust standard errors. For the state- and year-fixed effects, the base 

State is Utah and the base year is 1997.  

 
Table 2 Estimation results of spatial models (dependent variable: farmland values per acre) 

 
OLS 

pooled 
model 

A-spatial model 
SLX model 

High Low 

High Low 
Direct  
effect 

Indirect 
effect 

Direct 
effect 

Indirect 
effect 

Intercept 
3,857.600 

(0.000) 
7,262.400 

(0.000) 
3,369.200 

(0.049) 
7,618.700 

(0.000) 
 

2,728.900 
(0.110) 

 

Income 
0.024 

(0.076) 
0.022 

(0.181) 
0.002 

(0.874) 
0.024 

(0.144) 
 

<0.001 
(0.962) 

 

Density 
8.174 

(0.000) 
9.572 

(0.000) 
7.221 

(0.004) 
9.159 

(0.000) 
 

11.004 
(0.001) 

 

Fertilizer 
16.867 

(0.000) 
10.848 

(0.057) 
15.869 

(0.000) 
9.188 

(0.102) 
 

16.217 
(0.000) 

 

Irrigation 
1,341.400 

(0.000) 
1,102.900 

(0.000) 
1,880.300 

(0.000) 
995.930 
(0.006) 

317.360 
(0.529) 

1,748.300 
(0.001) 

142.370 
(0.387) 

Summer 
precipitation 

-919.310 
(0.032) 

-126.450 
(0.862) 

-1,275.300 
(0.015) 

-167.540 
(0.818) 

-425.520 
(0.188) 

-1,155.1 
(0.044) 

5.310 
(0.899) 

Winter 
precipitation 

1,361.200 
(0.007) 

881.310 
(0.165) 

1,363.100 
(0.051) 

703.460 
(0.289) 

473.380 
(0.270) 

1,248.400 
(0.076) 

134.810 
(0.099) 

Summer 
temperature 

-177.780 
(0.000) 

-256.73 
(0.000) 

-76.898 
(0.191) 

-257.090 
(0.000) 

4.652 
(0.617) 

-51.793 
(0.383) 

-8.213 
(0.020) 

Winter 
temperature 

129.000 
(0.000) 

219.44 
(0.000) 

103.240 
(0.000) 

226.680 
(0.000) 

-14.728 
(0.708) 

61.688 
(0.034) 

22.532 
(0.069) 

Summer 
precipitation^2 

227.740 
(0.032) 

-151.080 
(0.548) 

352.420 
(0.011) 

-89.121 
(0.723) 

 
317.080 
(0.027) 

 

Winter 
precipitation^2 

-601.310 
(0.009) 

-555.890 
(0.059) 

-400.420 
(0.284) 

-509.840 
(0.091) 

 
-461.770 
(0.230) 

 

K-ratio 
(erodibility) 

-5,212.100 
(0.001) 

-2,373.100 
(0.309) 

-9,527.200 
(0.000) 

-3,985.700 
(0.093) 

 
-9,393.600 

(0.000) 
 

AWC-ratio 
(permeability) 

3,723.700 
(0.173) 

733.760 
(0.842) 

9,699.000 
(0.003) 

1,204.000 
(0.751) 

 
10,210.000 

(0.751) 
 

State dummies Yes Yes Yes 

Year dummies Yes Yes Yes 

          N × T 500 252 248 252 248 
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Adj. R2 0.640 0.830 0.837 

Log Lik -4,126.807 -4,107.910 -4,091.752 

Chow test - 
5.757 

(0.000) 
4.154 

(0.000) 

Likelihood  
ratio test 

- 
37.193 

(0.000) 
32.316 

(0.000) 

BP test 
75.845 
(0.000) 

84.395 
(0.000) 

81.461 
(0.000) 

Breusch-Godfrey 
test 

101.300 
(0.000) 

89.023 
(0.000) 

74.229 
(0.000) 

Moran’s I test 
0.021 

(0.161) 
0.0175 
(0.205) 

-0.009 
(0.601) 

 

 

Ⅴ. Conclusions 

 
An increasing number of Ricardian studies have recently adopted a spatial 

econometric approach to highlight the role of interregional externalities in the 

impact of climate change on agriculture (Polsky, 2004; Seo, 2008; Lippert et al., 

2009; Dall’erba and Dominguez, 2016). Yet, the large majority of these studies 

rely on a traditional definition of interregional linkages defined on geographical 

proximity. Our manuscript takes a novel approach in that dependence is based 

on upstream-downstream relationships of surface water flows. Moreover, it 

builds on the nascent panel data approach in the Ricardian framework 

(Deschênes and Greenstone, 2007; Fezzi and Bateman, 2012; Massetti and 

Mendelsohn, 2011) to uncover how weather conditions and irrigation in 

upstream locations affect water availability, hence agricultural productivity and 

ultimately farmland value in downstream locations. Our approach is applied to 

the counties of the four corner States because irrigation is critical for agriculture 

in general and for crop production in particular in that part of the country. 

However, this work also has strong implications for some developing countries 

in Asia (Mendelsohn, 2014; Wang et al., 2014) that are, in general, more 

vulnerable to climate variation as they are more dependent on agriculture than 

our sample and lack a developed irrigation system. A correct estimation of the 

impact of climate change on their agriculture and economy would require 

researchers to account for the forms of interregional spillovers depicted in our 

approach. Moreover, the combination of a growing urban population and of a 

projected increase in temperature and extreme heat events will offer new 

challenges to the local ecosystem (Garfin et al., 2013).  

Our results indicate, first, that lowland and highland counties need to be 

treated separately as statistical tests and previous literature (Zhang et al., 2013; 
Dall’erba and Dominguez, 2016) indicate that the marginal effect of the weather 

variables varies with elevation. Second, while we find that local irrigation and 
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weather conditions have the expected impact on local agriculture, we also 

highlight how the weather conditions in upstream counties significantly affect 

downstream agriculture. It allows us to provide a more accurate measurement 

of the marginal effect of the weather conditions and to disentangle its local 

amount from its interregional amount.   

While our approach include interregional spillovers of surface water to a 

literature that has mostly ignored any form of externalities, we acknowledge that 

our framework suffers from the same limitations as traditional, a-spatial, 

Ricardian measurements. These are the assumptions of constant technology, 

constant market structure, and the lack of consideration for changes in input-

output quantities and prices in the future (Schlenker et al., 2006). In addition, we 

are aware that the matrix of interregional surface water flows we rely on is 

exogenous because, in itself, it is not affected by changes in weather conditions. 

A possible way to address this issue is to adopt the recently developed 

instrumental variables network difference-in-differences estimator of Dall’erba 

et al. (2021b) and modify it to the case of continuous treatment. Future research 

efforts will focus on calculating the consequences of our new estimates on future 

farmland values. Indeed, even though our results are calibrated over historical 

data, it is straightforward to use them in combination with projected climate 

conditions to generate new predicted figures of farmland values. We anticipate 

that this exercise will suggest more accurate estimates of the impact of climate 

change and, subsequently, a set of adaptation strategies that encompass locations 

that share the same streamflow. 
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