Browse > Article
http://dx.doi.org/10.14191/Atmos.2020.30.4.377

Characteristics of Air Stagnation over the Korean Peninsula and Projection Using Regional Climate Model of HadGEM3-RA  

Kim, Do-Hyun (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Kim, Jin-Uk (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Kim, Tae-Jun (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Byon, Jae-Young (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Kim, Jin-Won (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Kwon, Sang-Hoon (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.30, no.4, 2020 , pp. 377-390 More about this Journal
Abstract
Not only emissions, but also atmospheric circulation is a key factor that affects local particulate matters (PM) concentrations in Korea through ventilation effects and transboundary transports. As part of the atmospheric circulation, air stagnation especially adversely affects local air quality due to weak ventilation. This study investigates the large-scale circulation related to air stagnation over Korea during winter and projects the climate change impacts on atmospheric patterns, using observed PM data, reanalysis and regional climate projections from HadGEM3-RA with Modified Korea Particulate matter Index. Results show that the stagnation affects the PM concentration, accompanied by pressure ridge at upper troposphere and weaken zonal pressure gradient at lower troposphere. Downscaling using HadGEM3-RA is found to yield Added-Value in the simulated low tropospheric winds. For projection of future stagnation, SSP5-8.5 and SSP1-2.6 (high and low emission) scenarios are used here. It has been found that the stagnation condition occurs more frequently by 11% under SSP5-8.5 and by 5% under SSP1-2.6 than in present-day climate and is most affected by changes in surface wind speed. The increase in the stagnation conditions is related to anticyclonic circulation anomaly at upper troposphere and weaken meridional pressure gradient at lower troposphere. Considering that the present East Asian winter monsoon is mainly affected by change in zonal pressure gradient, it is worth paying attention to this change in the meridional gradient. Our results suggest that future warming condition increase the frequency of air stagnation over Korea during winter with response of atmospheric circulation and its nonlinearity.
Keywords
Air stagnation; Modified Korea Particulate matter Index; regional climate model; HadGEM3-RA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5, doi:10.1007/s10584-011-0148-z.   DOI
2 Wang, X., R. E. Dickinson, L. Su, C. Zhou, and K. Wang, 2018: PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull. Amer. Meteor. Soc., 99, 105-119, doi:10.1175/BAMS-D-16-0301.1.   DOI
3 WHO, 2016: Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization, 121 pp.
4 Xu, M., H. Xu, and J. Ma, 2016: Responses of the East Asian winter monsoon to global warming in CMIP5 models. Int. J. Climatol., 36, 2139-2155, doi:10.1002/joc.4480.   DOI
5 Yang, Y., H. Liao, and S. Lou, 2016: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos., 121, 13050-13065, doi:10.1002/2016JD025136.   DOI
6 Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin, 58, 175-183.
7 Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782.   DOI
8 Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.   DOI
9 Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937-1958, doi:10.5194/gmd-9-1937-2016.   DOI
10 Hong, C., and Coauthors, 2019: Impacts of climate change on future air quality and human health in China. Proc. Natl. Acad. Sci., 116, 17193-17200, doi:10.1073/pnas.1812881116.   DOI
11 Horton, D. E., Harshvardhan, and N. S. Diffenbaugh, 2012: Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environ. Res. Lett., 7, 044034, doi:10.1088/1748-9326/7/4/044034.   DOI
12 Kim, H.-C., and Coauthors, 2017: Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep., 7, 4710, doi:10.1038/s41598-017-05092-8.   DOI
13 Bai, N., M. Khazaei, S. F. van Eeden, and I. Laher, 2007: The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacol. Ther., 113, 16-29.   DOI
14 Cai, W., K. Li, H. Liao, H. Wang, and L. Wu, 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nature Clim. Change, 7, 257-262, doi:10.1038/nclimate3249.   DOI
15 Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017: Worsening of heat stress due to global warming in South Korea based on multi-RCM ensemble projections. J. Geophys. R. Atmos., 122, 444-11461, doi:10.1002/2017JD026731.   DOI
16 Jo, E.-J., and Coauthors, 2017: Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Resp. Med., 124, 79-87, doi:10.1016/j.rmed.2017.02.010.   DOI
17 Kan, H., S. J. London, G. Chen, Y. Zhang, G. Song, N. Zhao, L. Jiang, and B. Chen, 2007: Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ. Int., 33, 376-384.   DOI
18 Kim, J., 2008: Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965-2004). Atmos. Environ., 42, 4778-4789.   DOI
19 Kim, J., and Coauthors, 2014: Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim. Dyn., 42, 1189-1202, doi:10.1007/s00382-013-1751-7.   DOI
20 Kim, S.-H., and Coauthors, 2015: Effects of particulate matter in ambient air on the development and control of asthma. Allergy Asthma Respir. Dis., 3, 313-319, doi:10.4168/aard.2015.3.5.313 (in Korean with English abstract).   DOI
21 Lee, J. H., Y. P. Kim, K.-C. Moon, H.-K. Kim, and C. B. Lee, 2001: Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmos. Environ., 35, 635-643.   DOI
22 Korshover, J., and J. K. Angell, 1982: A review of air-stagnation cases in the eastern United States during 1981- Annual summary. Mon. Wea. Rev., 110, 1515-1518.   DOI
23 Kulkarni, S., M. C. Deo, and S. Ghosh, 2019: Performance of the CORDEX regional climate models in simulating offshore wind and wind potential. Theor. Appl. Climatol., 135, 1449-1464, doi:10.1007/s00704-018-2401-0.   DOI
24 Lee, H.-J., Y. M. Jeong, S.-T. Kim, and W.-S. Lee, 2018: Atmospheric circulation patterns associated with particulate matter over South Korea and their future projection. J. Climate Change Res., 9, 423-433 (in Korean with English abstract).   DOI
25 Lee, S., C.-H. Ho, and Y.-S. Choi, 2011: High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmos. Environ., 45, 7240-7247, doi:10.1016/j.atmosenv.2011.08.071.   DOI
26 Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dyn., 46, 2469-2486, doi:10.1007/s00382-015-2713-z.   DOI
27 Riahi, K., and Coauthors, 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153-168, doi:10.1016/j.gloenvcha.2016.05.009.   DOI
28 Sellar, A. A., and Coauthors, 2019: UKESM1: Description and evaluation of the U.K. Earth System Model. J. Adv. Model. Earth Sy., 11, 4513-4558, doi:10.1029/2019MS001739.   DOI
29 Torma, C., F. Giorgi, and E. Coppola., 2015: Added value of regional climate modeling over areas characterized by complex terrain-Precipitation over the Alps. J. Geophys. R. Atmos., 120, 3957-3972, doi:10.1002/2014JD022781.   DOI