• Title/Summary/Keyword: Region-based segmentation

Search Result 559, Processing Time 0.022 seconds

Image Segmentation Using Block Classification and Watershed Algorithm (블록분류와 워터쉐드를 이용한 영상분할 알고리듬)

  • Lim, Jae-Hyuck;Park, Dong-Kwon;Won, Chee-Sun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.81-92
    • /
    • 1999
  • In this paper, we propose a new image segmentation algorithm which can be use din object-based image coding applications such as MPGA-4. Since the conventional objet segmentation methods based on mathematical morphology tend to yield oversegmented results, they normally need a postprocess which merges small regions to obtain a larger one. To solve this oversegmentation problem, in this paper, we prosed a block-based segmentation algorithm that can identify large texture regions in the image. Also, by applying the watershed algorithm to the image blocks between the homogeneous regions, we can obtain the exact pixel-based contour. Experimental results show that the proposed algorithm yields larger segments, particularly in the textural area, and reduces the computational complexities.

  • PDF

Bottle Label Segmentation Based on Multiple Gradient Information

  • Chen, Yanjuan;Park, Sang-Cheol;Na, In-Seop;Kim, Soo-Hyung;Lee, Myung-Eun
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.24-29
    • /
    • 2011
  • In this paper, we propose a method to segment the bottle label in images taken by mobile phones using multi-gradient approaches. In order to segment the label region of interest-object, the saliency map method and Hough Transformation method are first applied to the original images to obtain the candidate region. The saliency map is used to detect the most salient area based on three kinds of features (color, orientation and illumination features). The Hough Transformation is a technique to isolated features of a particular shape within an image. Therefore, we utilize it to find the left and right border of the bottle. Next, we segment the label based on the gradient information obtained from the structure tensor method and edge method. The experimental results have shown that the proposed method is able to accurately segment the labels as the first step of product label recognition system.

Automatic Segmentation of Cellular Images for High-Throughput Genome-Wide RNA Interference Screening (고속 Genome-Wide RNA 간섭 스크리닝을 위한 세포영상의 자동 분할)

  • Han, Chan-Hee;Song, In-Hwan;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.19-27
    • /
    • 2010
  • In recent years, high-throughput genome-wide RNA interference screening is emerging as an essential tool to biologists in understanding complex cellular processes. The manual analysis of the large number of images produced in each study spends much time and the labor. Hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. However, those factors such as the region overlapping, a variety of shapes, and non-uniform local characteristics of cellular images become obstacles to efficient cell segmentation. To avoid the problem, a new watershed-based cell segmentation algorithm using a localized segmentation method and a feature vector is proposed in this paper. Localized approach in segmentation resolves the problems caused by a variety of shapes and non-uniform characteristics. In addition, the poor performance of segmentation in overlapped regions can be improved by taking advantage of a feature vector whose component features complement each other. Simulation results show that the proposed method improves the segmentation performance compared to the method in Cellprofiler.

Rate-distortion based image segmentation using recursive merging (반복적 병합을 이용한 율왜곡 기반 영상 분할)

  • 전성철;임채환;김남철
    • Journal of Broadcast Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-58
    • /
    • 1999
  • In this paper, a rate-distortion based image segmentation algorithm is presented using a recursive merging with region adjacency graph (RAG). In the method, the dissimilarity between a pair of adjacent regions is represented as a Lagrangian cost function considered in rate-distortion sense. Lagrangian multiplier is estimated in each merging step, a pair of adjacent regions whose cost is minimal is searched and then the pair of regions are merged into a new region. The merging step is recursively performed until some termination criterion is reached. The proposed method thus is suitable for region-based coding or segmented-based coding. Experiment results for 256x256 Lena show that segmented-based coding using the proposed method yields PSNR improvement of about 2.5 - 3.5 dB. 0.8 -1.0 dB. 0.3 -0.6 dB over mean-difference-based method. distortion-based method, and JPEG, respectively.

  • PDF

AN EFFICIENT IMAGE SEGMENTATION TECHNIQUE TO IDENTIFY TARGET AREAS FROM LARGE-SIZED MONOCHROME IMAGES

  • Yoon Young-Geun;Lee Seok-Lyong;park Ho-Hyun;Chung Chin-Wan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.571-574
    • /
    • 2005
  • In this paper, we propose an efficient image segmentation technique for large-sized monochrome images using a hybrid approach which combines threshold and region-based techniques. First, an image is partitioned into fixed-size blocks and for each block the representative intensity is determined by averaging pixel intensities within the block. Next, the neighborhood blocks that have similar characteristics with respect to a specific threshold are merged in order to form candidate regions. Finally, those candidate regions are refined to get final target object regions by merging regions considering the spatial locality and certain criteria. We have performed experiments on images selected from various domains and showed that our technique was able to extract target object regions appropriately from most images.

  • PDF

Image segmentation and line segment extraction for 3-d building reconstruction

  • Ye, Chul-Soo;Kim, Kyoung-Ok;Lee, Jong-Hun;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.59-64
    • /
    • 2002
  • This paper presents a method for line segment extraction for 3-d building reconstruction. Building roofs are described as a set of planar polygonal patches, each of which is extracted by watershed-based image segmentation, line segment matching and coplanar grouping. Coplanar grouping and polygonal patch formation are performed per region by selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been applied to high resolution aerial images and the results show accurate 3-d building reconstruction.

  • PDF

DIRECT COMPARISON STUDY OF THE CAHN-HILLIARD EQUATION WITH REAL EXPERIMENTAL DATA

  • DARAE, JEONG;SEOKJUN, HAM;JUNSEOK, KIM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-342
    • /
    • 2022
  • In this paper, we perform a direct comparison study of real experimental data for domain rearrangement and the Cahn-Hilliard (CH) equation on the dynamics of morphological evolution. To validate a mathematical model for physical phenomena, we take initial conditions from experimental images by using an image segmentation technique. The image segmentation algorithm is based on the Mumford-Shah functional and the Allen-Cahn (AC) equation. The segmented phase-field profile is similar to the solution of the CH equation, that is, it has hyperbolic tangent profile across interfacial transition region. We use unconditionally stable schemes to solve the governing equations. As a test problem, we take domain rearrangement of lipid bilayers. Numerical results demonstrate that comparison of the evolutions with experimental data is a good benchmark test for validating a mathematical model.

Endo- and Epi-cardial Boundary Detection of the Left Ventricle Using Intensity Distribution and Adaptive Gradient Profile in Cardiac CT Images (심장 CT 영상에서 밝기값 분포와 적응적 기울기 프로파일을 이용한 좌심실 내외벽 경계 검출)

  • Lee, Min-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, we propose an automatic segmentation method of the endo- and epicardial boundary by using ray-casting profile based on intensity distribution and gradient information in CT images. First, endo-cardial boundary points are detected by using adaptive thresholding and seeded region growing. To include papillary muscles inside the boundary, the endo-cardial boundary points are refined by using ray-casting based profile. Second, epi-cardial boundary points which have both a myocardial intensity value and a maximum gradient are detected by using ray-casting based adaptive gradient profile. Finally, to preserve an elliptical or circular shape, the endo- and epi-cardial boundary points are refined by using elliptical interpolation and B-spline curve fitting. Then, curvature-based contour fitting is performed to overcome problems associated with heterogeneity of the myocardium intensity and lack of clear delineation between myocardium and adjacent anatomic structures. To evaluate our method, we performed visual inspection, accuracy and processing time. For accuracy evaluation, average distance difference and overalpping region ratio between automatic segmentation and manual segmentation are calculated. Experimental results show that the average distnace difference was $0.56{\pm}0.24mm$. The overlapping region ratio was $82{\pm}4.2%$ on average. In all experimental datasets, the whole process of our method was finished within 1 second.

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

3D Medical Image Segmentation Using Region-Growing Based Tracking (영역 확장 기반 추적을 이용한 3차원 의료 영상 분할 기법)

  • Ko S.;Yi J.;Lim J.;Ra J. B.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.239-246
    • /
    • 2000
  • In this paper. we propose a semi-automatic segmentation algorithm to extract organ in 3D medical data by using a manually segmentation result in a sing1e slice. Generally region glowing based tracking method consists of 3 steps object projection. seed extraction and boundary decision by region growing. But because the boundary between organs in medical data is vague, improper seeds make the boundary dig into the organ or extend to the false region. In the proposed algorithm seeds are carefully extracted to find suitable boundaries between organs after region growing. And the jagged boundary at low gradient region after region growing is corrected by post-processing using Fourier descriptor. Also two-path tracking make it possible to catch up newly appeared areas. The proposed algorithm provides satisfactory results in segmenting 1 mm distance kidneys from X-rav CT body image set of 82 slices.

  • PDF