Image segmentation and line segment extraction for 3-d building reconstruction
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Abstract

This paper presents a method for line segment extraction for 3-d building reconstruction. Building roofs are described

as a set of planar polygonal patches, each of which is extracted by watershed-based image segmentation, line segment

matching and coplanar grouping. Coplanar grouping and polygonal patch formation are performed per region by

selecting 3-d line segments that are matched using epipolar geometry and flight information. The algorithm has been

applied to high resolution aerial images and the results show accurate 3-d building reconstruction.
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1. Introduction

There have been many building detection and
extraction techniques. In the last few years, the analysis
of 3-D data such as 3-D lines, 3-D corners, or digital
elevation model (DEM) has been much developed. Some
methods based on coplanar grouping of 3-D lines have
been proposed for reconstructing generic models of
buildings from high-resolution multiple imagery
(Bignone, 1995; Frere et al, 1997; Henricsson and
Baltsavia, 1997; Ye and Lee, 2000). We propose a
method to extract a building roof consisting of a set of
planar polygonal patches by watershed segmentation and

3-D grouping.

2. Image segmentation using watershed

El-Fallah and Gary E. Ford represented the image as a

surface and proved that setting the inhomogeneous
diffusion coefficient equal to the inverse of the
magnitude of the surface normal results in surface
evolving speed that is proportional to the mean curvature
of the image surface (El-Fallah and Ford, 1997). This
model has the advantage of having the mean curvature
diffusion (MCD) render invariant magnitude, thereby
preserving structure and locality. By coupling the
min/max flow to the surface diffusion model controlled
by the surface’s normal magnitude and smoothness,
noise is eliminated and thin edges are preserved more
efficiently (Ye and Lee, 2001).

After edge preserving filtering using mean curvature
diffusion, a hybrid image segmentation algorithm is
applied, which integrates edge-based and region-based
techniques through the watershed algorithm (Ye and Lee,

2002). First, Images are segmented by watershed



algorithm, the segmented regions are combined with
neighbor regions. Region adjacency graph (RAG) is
employed to analyze the relationship among the
segmented regions. The graph nodes and edge costs in
RAG correspond to segmented regions and
dissimilarities between two adjacent regions respectively.
After the most similar pair of regions is determined by
searching minimum cost RAG edge, regions are merged
and the RAG is updated. The proposed method

efficiently reduces noise and provides one-pixel wide,

closed contours.

3. Line segment extraction from a region boundary
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Fig. 1. Boundary represented by 8-directional chain code.

For each region in the labeled image, an 8-directional
chain code is generated by following the boundary of the
region in a counterclockwise direction and assigning a
direction to each pixel as shown in Fig. 1.

We need to calculate discrete curvature of the
boundary chain code to find control points used to detect
line segments. Curvature for a function y(x) is defined

as
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Because the curves taken from real images do not have
a proper function y=y(x), we cast x and y into
parameter form, x(r) and y(r), where O<i<L, L

being the length of the curve. Then
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Differentiating discrete signals is inherently noisy.

Therefore we convolve x(;) and y() with the

Gaussian kernel to smooth and differentiate the functions

as follows:
X(t,O'):x(I)*g(l,O') (5)
Y(r,0) = y(t)* g(t,0)
where
gt,o)= ew. (6)
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We get the following formula for discrete curvature:
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4. Line segment merging and position correction

After line segment extraction, we link line segments
satisfying some criteria. For the two line segments AB
and CD having similar direction as shown in Fig. 2, new

line segment is created if the three conditions are

satisfied.
16, =0, 1< Tyeq e, )]
AB+CD
T > Tlength ®
d, <Ty, and d, <Ty, (10)

For the small line segment BC between long line



segments, if the condition (11) is satisfied, find the
intersection point H and create new line segments AH
and HD as shown in Fig. 3.

AB+BC+CD>AH + HD (11)

Fig. 3. Merging two lines with different direction.
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Fig. 4. Correction of line segment position.

To minimize the position error of the line segment
extracted from a region boundary, the line segment is
adjusted using edgeness measure function (Fig. 4).
and

Discretize the domain of 6, between 6

0

min

max iD steps of 0.5°. For every position in the 5x5

window located in the center of the line segment AB,

compute the edgeness measure for @ between O

and 8,,, . Find the location and 6 with the maximum
edgeness.

As the region in the roof is relatively large and its
average segment length is long, we accept the region that
satisfies the following 3 criteria:

- Total length of region beundary is longer than T, .

- Number of control points is larger than 7. .

- Average segment length between control points is

longer than T,.

5. Segment stereo matching and 3-d grouping

Line segments extracted from the region boundary are
matched in the other image by maximizing an edginess
measure along epipolar line. The edginess measure is a
function of the gradient magnitude and the local
orientation of the gradient in the other image. For a
maximum of the edginess measure, there is a high
probability that there is an edge in the image. The
epipolar constraint is applied to restrict the search space
of the correspondences along the epipolar line.

The 3-D line segments obtained in stereo matching are
to be grouped into coplanar configurations. The coplanar
grouping process can be restricted to the 3-D line
segments from region boundary. Coplanar grouping and
polygonal patch formation is performed per region by
selecting 3-D line segments that are matched using
epipolar geometry and flight information. Starting with
the longest ones, 2 line segments are selected in the
region. If orthogonal distance from the line segments to a
plane described by these line segments is small, we
construct the plane that fits the line segments in a least-
square sense. Coplanarity is assumed if both end points
of the line segment have a distance to the plane smaller a
particular bound and if the angle between the line
segment and the plane’s normal is close to 90° ( Frere et

al, 1997). All segments that satisfy this constraint are



then included in the defining set of the plane and the

plane’s equation is updated.

6. Experimental results

We choose the residential scene from the Avenches
data set having the following characteristics: 1:5,000
image scale, vertical aerial photography, four-way image
coverage, color imagery of size 1800 x 1800 pixels,
ground area of approximately 75x 75 millimeters (Fig.
5). An example of the image of size 400x 400 from the

Avenches data set is shown in Fig. 6(a).

Fig. 5. An image from the Avenches data set.

We see that noise within region is well removed by the
proposed mean curvature diffusion (Fig. 6(c) and (d)). It
is not necessary to merge regions into one roof plane as
like other segmentation method (Fig. 6(e) and (f)). Fig. 7
shows examples of extracted roof boundary. Final resuit
of line segment merging and position correction is shown

in Fig. 8. Matched line segments after the stereo

matching for the roofs of the building are shown in Fig. 9.

Another result of roof reconstruction is shown in Fig. 10.
Line segments were merged correctly from partially
incorrect segmentation result as shown in Fig. 10 (¢) and

(d). The accuracy is evaluated with the reconstructed

plane and the corner points in a CAD model of the
building extracted with an accuracy of about 0.1 meters.
Standard deviation of the coordinate difference between
reference corner points and reconstructed corner points
were computed including the rms-values for the distance
between the reconstructed plane and the corner points of
reference plane in a CAD model of the building in table
1 and table 2. The reconstructed plane was generated

using the 3-d line segments satisfying the coplanarity.
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Fig. 6. (a) and (b) An example of aerial image from the
Avenches data set and zoomed region of Fig. 6(a)
(surrounded by the white box) (c) and (d) mean curvature
diffusion filtered images (e) and (f) final segmentation

results.
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Fig. 7. Examples of extracted roof boundaries.

Fig. 8. Result of line segment merging and position

correction.

Fig. 9. Matched line segments after stereo matching for

the building roof in Fig. 8 (matches in white).

Fig. 10. Another result of roof reconstruction (a) original
image (b) segmented image (c) extracted roof boundaries
(d) result of line segment merging and position

correction (e) matched line segments.

Table 1. Accuracy achieved by coplanar grouping for the

roofs in Fig. 9 [m].

standard { standard | standard
deviation { deviation | deviation

of AX of AY of AZ
Roof 1 0.0476 0.0143 0.0598 0.1190

RMSE

Roof 2 | 0.0779 0.0508 0.2812 0.4783

Roof 3 0.0548 0.0509 0.1042 0.1999

Roof 4 0.0850 0.0799 0.2366 0.3032

Roof 5 0.0740 0.0529 0.0560 0.7701




Table 2. Accuracy achieved by coplanar grouping for the

roofs in Fig. 10 (a)[m].

star}dgrd star?dz?rd star.xdgrd RMSE
deviation | deviation | deviation
of AX of AY of AZ
Roof 1 0.0224 0.1397 0.3064 0.2729
Roof 2 0.0499 0.0849 0.1718 0.2288

7. Conclusions

An approach for line segment extraction for 3-d
building reconstruction was proposed. Building roofs are
described as a set of planar polygonal patches, each of
which is extracted by watershed-based image
segmentation, line segment matching and coplanar
grouping. We extracted line segments from a region
boundary after image segmentation and then line
segment merging was performed. To minimize the
position error of the line segment extracted from a region
boundary, the line segment was adjusted using edgeness
measure function. Coplanar grouping and polygonal
patch formation are performed per region by selecting 3-
d line segments that are matched using epipolar
geometry and flight information. The algorithm has been
applied to aerial images and the results show correct line

segment extraction from region boundary and accurate 3-

d building reconstruction.
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