Browse > Article
http://dx.doi.org/10.12941/jksiam.2022.26.333

DIRECT COMPARISON STUDY OF THE CAHN-HILLIARD EQUATION WITH REAL EXPERIMENTAL DATA  

DARAE, JEONG (DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY)
SEOKJUN, HAM (DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY)
JUNSEOK, KIM (DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.26, no.4, 2022 , pp. 333-342 More about this Journal
Abstract
In this paper, we perform a direct comparison study of real experimental data for domain rearrangement and the Cahn-Hilliard (CH) equation on the dynamics of morphological evolution. To validate a mathematical model for physical phenomena, we take initial conditions from experimental images by using an image segmentation technique. The image segmentation algorithm is based on the Mumford-Shah functional and the Allen-Cahn (AC) equation. The segmented phase-field profile is similar to the solution of the CH equation, that is, it has hyperbolic tangent profile across interfacial transition region. We use unconditionally stable schemes to solve the governing equations. As a test problem, we take domain rearrangement of lipid bilayers. Numerical results demonstrate that comparison of the evolutions with experimental data is a good benchmark test for validating a mathematical model.
Keywords
Phase transition; Spinodal decomposition; Cahn-Hilliard equation; image segmentation; phase-field method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Physical review A, 20(2) (1979), 595.    DOI
2 J. T. Cabral, J. S. Higgins, T. C. B. McLeish, S. Strausser, S. N. Magonov Bulk, spinodal decomposition studied by atomic force microscopy and light scattering, Macromolecules, 34(11) (2001), 3748-3756.    DOI
3 H. J. Chung, R. J. Composto, Breakdown of dynamic scaling in thin film binary liquids undergoing phase separation, Physical review letters, 92(18) (2004), 185704.    DOI
4 B. P. Lee, J. F. Douglas, S. C. Glotzer, Filler-induced composition waves in phase-separating polymer blends, Physical Review E, 60(5) (1999), 5812.    DOI
5 F. A. Castro, C. F. Graeff, J. Heier, R. Hany, Interface morphology snapshots of vertically segregated thin films of semiconducting polymer/polystyrene blends, Polymer, 48(8) (2007), 2380-02386.    DOI
6 P. Sphingomyelin, Lipid Rafts: Phase Separation in Lipid Bilayers studied with Atomic Force Microscopy, https://analyticalscience.wiley.com/do/10.1002/micro.162/full/ 
7 R. Blossey, Thin film rupture and polymer flow, Physical Chemistry Chemical Physics, 10(34) (2008), 5177-5183.    DOI
8 J. L. Masson, R. Limary, P. F. Green, Pattern formation and evolution in diblock copolymer thin films above the order-disorder transition, The Journal of Chemical Physics, 114(24) (2001), 10963-10967.    DOI
9 A. Novick-Cohen, L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D: Nonlinear Phenomena, 10(3) (1984), 277-298.    DOI
10 C. M. Elliott, Z. Songmu, On the cahn-hilliard equation, Archive for Rational Mechanics and Analysis, 96(4) (1986), 339-357.    DOI
11 L. A. Caffarelli, N. E. Muler, An L bound for solutions of the Cahn-Hilliard equation, Archive for rational mechanics and analysis, 133(2) (1995), 129-144.    DOI
12 Y. Jingxue, On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation, Journal of differential equations, 97(2) (1992), 310-327.    DOI
13 M. Grinfeld, A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 125(2) (1995), 351-370.    DOI
14 C. M. Elliott, H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, Siam journal on mathematical analysis, 27(2) (1996), 404-423.    DOI
15 P. C. Fife, Dynamical aspects of the Cahn-Hilliard equations, University of Tennessee; Knoxville; TN; Barret Lectures, 1991. 
16 P. C. Fife, Models for phase separation and their mathematics, Electron. J. Differ. Eq. Conf., 48 (2000), 1-26. 
17 P. Rybka, K. H. Hoffnlann, Convergence of solutions to Cahn-Hilliard equation, Communications in partial differential equations, 24(5-6) (1999), 1055-1077.    DOI
18 D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numerische Mathematik, 87(4) (2001), 675-699.    DOI
19 Y. He, Y. Liu, T. Tang, On large time-stepping methods for the Cahn-Hilliard equation, Applied Numerical Mathematics, 57(5-7) (2007), 616-628.    DOI
20 J. Zhu, L. Q. Chen, J. Shen, V. Tikare, Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method, Physical Review E, 60(4) (1999), 3564.    DOI
21 E. V. L. De Mello, O. T. da Silveira Filho, Numerical study of the Cahn-Hilliard equation in one, two and three dimensions, Physica A: Statistical Mechanics and its Applications, 347 (2005), 429-443.    DOI
22 M. I. M. Copetti, C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numerische Mathematik, 63Z(1) (1992), 39-65. 
23 Y. Zhao, P. Stein, B. X. Xu, Isogeometric analysis of mechanically coupled Cahn-Hilliard phase segregation in hyperelastic electrodes of Li-ion batteries, Computer Methods in Applied Mechanics and Engineering, 297, 325-347.    DOI
24 T. M. Rogers, R. C. Desai, Numerical study of late-stage coarsening for off-critical quenches in the CahnHilliard equation of phase separation, Physical Review B, 39(16) (1989), 11956.    DOI
25 C. M. Elliott, D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA Journal of Applied Mathematics, 38(2) (1987), 97-128.    DOI
26 L. Ju, J. Zhang, Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Computational Materials Science, 108(2015), 272-282.    DOI
27 Y. Shang, L. Fang, M. Wei, C. Barry, J. Mead, D. Kazmer, Verification of numerical simulation of the self-assembly of polymer-polymer-solvent ternary blends on a heterogeneously functionalized substrate, Polymer, 52(6) (2011), 1447-1457.    DOI
28 H. Mantz, K. Jacobs, K. Mecke, Utilizing Minkowski functionals for image analysis: a marching square algorithm, Journal of Statistical Mechanics: Theory and Experiment, 2008(12) (2008), 12015. 
29 S. Burger, T. Fraunholz, C. Leirer, R. H. Hoppe, A. Wixforth, M. A. Peter, T. Franke, Comparative study of the dynamics of lipid membrane phase decomposition in experiment and simulation, Langmuir, 29(25) (2013), 7565-7570.    DOI
30 J. W. Cahn, On spinodal decomposition, Acta metallurgica, 9(9) (1961), 795-801.    DOI
31 D. Lee, J. Y. Huh, D. Jeong, J. Shin, A. Yun, J. Kim, Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation, Computational Materials Science, 81 (2014), 216-225.    DOI
32 M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Robust and optimal multi-iterative techniques for IgA collocation linear systems, Computer Methods in Applied Mechanics and Engineering, 284 (2015), 1120-1146.    DOI
33 Y. Li, J. Kim, An unconditionally stable hybrid method for image segmentation, Applied Numerical Mathematics, 82 (2014), 32-43.    DOI
34 W. L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987. 
35 U. Trottenberg, C. Oosterlee, A. Schuller, Multigrid, Academic Press, London, 2001. 
36 H. K. Kodali, B. Ganapathysubramanian, A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices, Computer Methods in Applied Mechanics and Engineering, 247 (2012), 113-129.    DOI
37 Y. G. Smirnova, M. Fuhrmans, I. A. B. Vidal, M. Muller, Free-energy calculation methods for collective phenomena in membranes, Journal of Physics D: Applied Physics, 48(34) (2015), 343001. 
38 J. Fan, T. Han, M. Haataja, Hydrodynamic effects on spinodal decomposition kinetics in planar lipid bilayer membranes, The Journal of Chemical Physics, 133(23) (2010), 235101. 
39 J. W. Choi, H. G. Lee, D. Jeong, J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 388(9) (2009), 1791-1803.   DOI