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ABSTRACT. In this paper, we perform a direct comparison study of real experimental data for
domain rearrangement and the Cahn–Hilliard (CH) equation on the dynamics of morphological
evolution. To validate a mathematical model for physical phenomena, we take initial conditions
from experimental images by using an image segmentation technique. The image segmentation
algorithm is based on the Mumford–Shah functional and the Allen–Cahn (AC) equation. The
segmented phase-field profile is similar to the solution of the CH equation, that is, it has hyper-
bolic tangent profile across interfacial transition region. We use unconditionally stable schemes
to solve the governing equations. As a test problem, we take domain rearrangement of lipid
bilayers. Numerical results demonstrate that comparison of the evolutions with experimental
data is a good benchmark test for validating a mathematical model.

1. INTRODUCTION

A phase transition is the transformation of a thermodynamic system from one phase to
another. It includes rapid behavioral change, for instance, spinodal decomposition, eutectic
transformation, liquid crystal, liquid evaporation, etc. We focus on the spinodal decomposi-
tion which is the process through which a thermodynamically unstable system separates into
its components which can be either two phases of the same chemical species or phases of
different composition [1]. Spinodal decomposition of mixtures has been studied experimen-
tally [2, 3, 4, 5, 6, 7, 8], mathematically [9, 10, 11, 12, 13, 14, 15, 16, 17], and numerically
[18, 19, 20, 21, 22, 23, 24, 25, 26] by many researchers. Also, there have been many exper-
imental and numerical comparison studies [27, 28, 29]. However, compared to an enormous
amount of numerical simulations, there has been no direct comparison study of morphologi-
cal evolution with real experimental data. To the authors’ knowledge, the present study is the
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first attempt to use the experimental configuration as an initial condition and compare the real
experimental data and the simulation results from the mathematical model. Burger et al. [29]
studied phase decomposition by comparing the numerical simulation and experiment results,
see Fig. 1. However, the authors chose a different initial condition, which was not the same
profile of the experimental data.

FIGURE 1. Top and bottom rows are real experiment and numerical simula-
tion results, respectively. Reprinted from Burger et al. [29], with permission
from the American Chemical Society.

The main objective of this work is, therefore, to validate a mathematical model for mi-
crostructure evolution phenomena by using the initial configuration from the real experimental
data. This paper is organized as follows. In Section 2, we briefly review the Cahn–Hilliard
(CH) equation. In Section 3, we describe the image segmentation technique which is based on
the Mumford–Shah functional and the Allen–Cahn equation. In Section 4, we present numer-
ical algorithms of the CH equation and image segmentation. In Section 5, we present various
numerical results. Conclusions are drawn in Section 6.

2. CAHN–HILLIARD EQUATION

The Cahn–Hilliard equation is a phenomenological mathematical model of phase separation
in a binary mixture [30].

∂ϕ(x, y, t)

∂t
=M∆µ(x, y, t), (x, y) ∈ Ω, 0 < t ≤ T, (2.1)

µ(x, y, t) =F ′(ϕ(x, y, t))− ϵ2∆ϕ(x, y, t), (2.2)

where M is a mobility, F (ϕ) = 0.25(ϕ2 − 1)2 is a free energy function, and ϵ is positive small
constant. Typically, we use Neumann boundary conditions as

n · ∇ϕ=0, (2.3)
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n · ∇µ=0 on ∂Ω, (2.4)

where n is normal to ∂Ω. Equation (2.3) means the interface meets the domain boundary with
90◦ and Eq. (2.4) is intended for mass conservation. For more details about physical and
mathematical derivations of the CH equation, see reference [31] and the references therein.

3. IMAGE SEGMENTATION ALGORITHM

To obtain the initial configuration from real experimental data, we use a recently developed
image segmentation algorithm which is based on the Mumford–Shah functional and the Allen–
Cahn equation [32]. The equation is given as

ψt = −F
′(ψ)

δ2
+∆ψ + λ[(1− ψ)(f0 − c2)

2 − (1 + ψ)(f0 − c1)
2], (3.1)

where δ is a phase transition width parameter, λ is a nonnegative parameter, and f0 is the
given image. Also, c1 and c2 are the averages of f0 in the regions satisfying ψ ≥ 0 and ψ < 0,
respectively:

c1 =

∫
Ω f0(x)[1 + ψ(x)]dx∫

Ω [1 + ψ(x)]dx
and c2 =

∫
Ω f0(x)[1− ψ(x)]dx∫

Ω [1− ψ(x)]dx
.

Once ψ reaches a steady state, the zero level set of ψ becomes the contour that separates the
object from the background. More details about the modeling and the basic mechanism of the
image segmentation algorithm can be found in reference [32].

4. NUMERICAL SOLUTION

In this section, we describe the numerical schemes for the CH equation and image segmen-
tation algorithm.

4.1. Numerical scheme for the Cahn–Hilliard equation. Equations (2.1) and (2.2) are dis-
cretized in a two-dimensional space Ω = (a, b)× (c, d). We use a Nx ×Ny mesh grid, where
Nx and Ny are positive even integers. h = (b − a)/Nx is a space step and Ωh = {(xi, yj) :
xi = (i− 0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} is a discrete domain. Let ϕnij and
µnij be approximations of ϕ(xi, yj , tn) and µ(xi, yj , tn), respectively. Here, tn = n∆t and ∆t
is a time step size. For simplicity, we take M = 1 as constant mobility. The CH Eqs. (2.1) and
(2.2) can be discretized by using an unconditionally stable scheme as

ϕn+1
ij − ϕnij

∆t
= ∆dµ

n+1
ij

µn+1
ij = (ϕn+1

ij )3 − ϕnij − ϵ2∆dϕ
n+1
ij .

Here, discrete Laplacian operator is defined by ∆dϕ
n+1
ij = (ϕn+1

i+1,j+ϕ
n+1
i−1,j+ϕ

n+1
i,j+1+ϕ

n+1
i,j−1−

4ϕn+1
ij )/h2. The boundary conditions (2.3) and (2.4) are discretized as

ϕ0j = ϕ1j , ϕNx+1,j = ϕNxj for j = 1, . . . , Ny,

ϕi0 = ϕi1, ϕi,Ny+1 = ϕiNy for i = 1, . . . , Nx.
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For more detailed explanations, please refer to [31].

4.2. Numerical scheme for the image segmentation. An unconditionally stable hybrid nu-
merical scheme for Eq. (3.1) was proposed in reference [32] as

ψn+1,1 = (e−λ[(f0−cn1 )
2+(f0−cn2 )

2]∆t − 1)
(f0 − cn1 )

2 − (f0 − cn2 )
2

(f0 − cn1 )
2 + (f0 − cn2 )

2
(4.1)

+e−λ[(f0−cn1 )
2+(f0−cn2 )

2]∆tψn,

ψn+1,2 − ψn+1,1

∆t
=∆dψ

n+1,2, (4.2)

ψn+1 =ψn+1,2
/√

e
−2∆t

δ2 + (ψn+1,2)2(1− e
−2∆t

δ2 ), (4.3)

where cn1 and cn2 are given as

cn1 =

Nx∑
i=1

Ny∑
j=1

f0,ij(1 + ψn
ij)

Nx∑
i=1

Ny∑
j=1

(1 + ψn
ij)

and cn2 =

Nx∑
i=1

Ny∑
j=1

f0,ij(1− ψn
ij)

Nx∑
i=1

Ny∑
j=1

(1− ψn
ij)

.

The solutions of Eqs. (4.1) and (4.3) are explicitly defined. Equation (4.2) is a heat equation
and we apply a fast solver such as a multigrid method [33, 34, 35] to solve the equation.

5. NUMERICAL RESULTS

5.1. Preparation of an initial condition using image segmentation. First, we take an ex-
perimental image [6] (Fig. 2(a)), change it in a gray scaled image, f , and then normalize it,
i.e.,

f0 =
f − fmin

fmax − fmin
, (5.1)

where fmax and fmin are the maximum and the minimum values of the given image, respec-
tively. As an initial condition for the image segmentation algorithm, we take ψ0 = 2f0 − 1.
Using this initial condition, we solve Eqs. (4.1)–(4.3) for n = 1, 2, 3, · · · until the solution
reaches a steady state ψ∞ within a given tolerance. Figure 2(c) shows the temporal evolution
of the image segmentation.

Note that we used a random initial condition perturbed around zero with maximum ampli-
tude 0.2 on the computational domain Ω = (0, 1)× (0, 1) to show the robustness of the image
segmentation algorithm. In practice, we use ψ0 = 2f0−1 to speed up the computation. The last
figure is the segmented image. We used the following parameters δ = 0.00938, λ = 9.5E4,
h = 1/256, and ∆t = 1.0E-5. The numerical calculation is set to stop if the discrete l2-norm
of the difference between the (n + 1)th and nth solutions becomes less than a given tolerance
tol = 0.01, i.e., ∥ψn+1 −ψn∥2 < tol. Figure 2(b) is the overlapped image of the experimental
data and the zero level contour of the segmented image. In general, because of the effect of λ



DIRECT COMPARISON STUDY OF THE CH EQUATION WITH REAL EXPERIMENTAL DATA 337

(a) (b)

(c)

t = 10∆t t = 20∆t t = 25∆t t = 75∆t

FIGURE 2. Image segmentation process to obtain initial condition for numeri-
cal experiment: (a) experimental AFM (atomic force microscope) image data,
(b) overlapped image of the experimental data and the zero level contour of
the segmented image, and (c) temporal evolution of the image segmentation.
Reprinted with permission from [6]. Copyright ©2015. John Wiley & Sons
Ltd. All rights reserved.

value, the minimum and the maximum values of ϕ0 = ψ∞ is not close to minus and plus one,
respectively. Therefore, to be used as an initial condition for the CH equation, we rescale and
redefine it as

ϕ0 =
2ϕ0 − ϕ0max − ϕ0min

ϕ0max − ϕ0min

. (5.2)

5.2. Numerical verification with reference data. In this section, we numerically solve the
CH equation with the segmented image as an initial condition and then, we will compare the
results from the mathematical model and the real experiment. Figures 3(a) and (b) show the
height images of the lipid bilayer on 14 × 12 micron area [6] at a reference time and after 7
minutes, respectively. In this experiment, the phase is rearranged over time as the membrane
adjusts slowly to the conditions at room temperature. The small one disappears and the larger
phase becomes rounded and smooth-edged. The lipid phase behavior can be modeled by the
CH equation [36, 37, 38].
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(a) (b)

(c)

t = 0 t = 150∆t t = 600∆t t = 900∆t

FIGURE 3. Numerical verification process with reference data which are ex-
perimental AFM (atomic force microscope) image data at (a) a reference time
and (b) after 7 minutes. (c) Numerical solutions of the CH equation from t = 0
to t = 900∆t. Reprinted with permission from [6]. Copyright ©2015. John
Wiley & Sons Ltd. All rights reserved.

Next, we numerically solve the CH equation with the segmented image (see the first image
in Fig. 3(c)) on the computational domain Ω = (0, 1) × (0, 1). We consider the interfacial
transition layer parameter ϵm = mh/[2

√
2 tanh−1(0.9)], which sets the transition layer length

as mh approximately. More details about transition layer parameter are given in [39]. The
parameters used are h = 1/256, ϵ = ϵ4, and ∆t = 2h2. Temporal evolutions are shown in Fig.
3(c). Similar to the experimental result, we see the interface with high curvature in the center
of the image becomes smoothed.

5.3. Comparison the results of constant and variable mobility. In this section, we compare
the results of constant and variable mobility M(ϕ) = |1− ϕ2|. We used the parameters are as
follows: spatial step size h = 1/256, temporal step size ∆t = h2 for constant mobility and
∆t = 10h2 for variable mobility, size of transition layer ϵ = ϵ4 on the computational domain
(0, 1)× (0, 1). Because variable mobility has an effect on the interface, it occurs the different
phenomena from constant mobility as in Fig. 4 (e)–(f).
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4. Comparison the results of constant and variable mobility. The
experiment data (a) initial and (b) after evolution. (c), (d) are results by over-
lapping the time evolution. (c) Constant and (d) variable mobility which show
the initial (red line) and final (blue line). (e) Constant and (f) variable mobility
simulation results at t = 2000∆t.

6. CONCLUSION

In this paper, we proposed a method to validate a mathematical model for physical phe-
nomena. This is done through a direct comparison study of real experimental data for domain
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rearrangement and the CH equation on the dynamics of morphological evolution. With regard
to the verification, we start with taking initial conditions from experimental image by an image
segmentation technique. Applying the image segmentation algorithm based on the Mumford–
Shah functional and the Allen–Cahn equation, we obtained the segmented phase-filed profile
which is similar to the solution of the CH equation. And then, we numerically solved the
CH equation with unconditionally stable scheme. As a test problem, we considered domain
rearrangement of lipid bilayers. The numerical results showed good agreement in terms of
morphology and interface location compared to the image data from real experimental evolu-
tion. The methodology developed in this paper suggests a numerical method for validating a
mathematical equation modelling physical phenomena.
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