• Title/Summary/Keyword: Reflow time

Search Result 69, Processing Time 0.023 seconds

Characteristics of Sn-Pb Electroplating and Bump Formation for Flip Chip Fabrication (전해도금에 의해 제조된 플립칩 솔더 범프의 특성)

  • Hwang, Hyeon;Hong, Soon-Min;Kang, Choon-Sik;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.520-525
    • /
    • 2001
  • The Sn-Pb eutectic solder bump formation ($150\mu\textrm{m}$ diameter, $250\mu\textrm{m}$ pitch) by electroplating was studied for flip chip package fabrication. The effect of current density and plating time on Sn-Pb deposit was investigated. The morphology and composition of plated solder surface was examined by scanning electron microscopy. The plating thickness increased wish increasing time. The plating rate became constant at limiting current density. After the characteristics of Sn-Pb plating were investigated, Sn-Pb solder bumps were fabricated in optimal condition of $7A/dm^$. 4hr. Ball shear test after reflow was performed to measure adhesion strength between solder bump and UBM (Under Bump Metallurgy). The shear strength of Sn-Pb bump after reflow was higher than that of before reflow.

  • PDF

A Study on the Characteristics of Sn-Cu Solder Bump for Flip Chip by Electroplating (전해도금에 의한 플립칩용 Sn-Cu 솔더범프의 특성에 관한 연구)

  • Jung, Seok-Won;Hwang, Hyun;Jung, Jae-Pil;Kang, Chun-Sik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.49-53
    • /
    • 2002
  • The Sn-Cu eutectic solder bump formation ($140{\mu}{\textrm}{m}$ diameter, $250{\mu}{\textrm}{m}$ pitch) by electroplating was studied for flip chip package fabrication. The effect of current density and plating time on Sn-Cu deposit was investigated. The morphology and composition of plated solder surface was examined by scanning electron microscopy. The plating thickness increased with increasing time. The plating rate increased generally according to current density. After the characteristics of Sn-Cu plating were investigated, Sn-Cu solder bumps were fabricated on optimal condition of 5A/dm$^2$, 2hrs. Ball shear test after reflow was performed to measure adhesion strength between solder bump and UBM (Under Bump Metallization). The shear strength of Sn-Cu bump after reflow was higher than that of before reflow.

  • PDF

Material Property Evaluation of High Temperature Creep on Pb-free Solder Alloy Joint to Reflow Time by Shear Punch-creep Test (전단펀치-크리프 시험에 의한 리플로우 시간별 Pb-free 솔더 합금 접합부에 대한 고온 크리프 물성 평가)

  • Ham, Young Pil;Heo, Woo Jin;Yu, Hyo Sun;Yang, Sung Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.145-153
    • /
    • 2013
  • In this study, shear punch-creep (SP-Creep) at Sn-4Ag/Cu pad the joint was tested by using environment-friendly Pb-free solder alloy Sn-4Ag of electronic components. Pb eutectic alloy (Sn-37Pb) joints limited to environmental issues with reflow time (10sec, 30sec, 100sec, 300sec) according to two types of solder alloy joints are compared and evaluated by creep strain rate, rupture time and IMC (Intermetallic Compound) behavior. As the results, reflow time increases with increasing thickness of IMC can be seen at overall 100sec later in case of two solder joints on the IMC thickness of Sn-4Ag solder joints thicker than Sn-37Pb solder joints. In addition, when considering creep evaluation factors, lead-free solder alloy Sn-4Ag has excellent creep resistance more than Pb eutectic alloy. For this reason, the two solder joints, such as in the IMC (Cu6Sn5) was formed. However, the creep resistance of Sn-4Ag solder joints was largely increased in the precipitation strengthening effect of dispersed Ag3Sn with interface more than Sn-37Pb solder joints.

A Study on Selective Transfer and Reflow Process of Micro-LED using Micro Stamp (마이크로 스탬프를 이용한 Micro-LED 개별 전사 및리플로우 공정에 관한 연구)

  • Han, Seung;Yoon, Min-Ah;Kim, Chan;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2022
  • Micro-light emitting diode (micro-LED) displays offer numerous advantages such as high brightness, fast response, and low power consumption. Hence, they are spotlighted as the next-generation display. However, defective LEDs may be created due to non-uniform contact loads or LED alignment errors. Therefore, a repair process involving the replacement of defective LEDs with favorable ones is necessitated. The general repair process involves the removal of defective micro-LEDs, interconnection material transfer, as well as new micro-LED transfer and bonding. However, micro-LEDs are difficult to repair since their size decreases to a few tens of micron in width and less than 10 ㎛ in thickness. The conventional nozzle-type dispenser for fluxes and the conventional vacuum chuck for LEDs are not applicable to the micro-LED repair process. In this study, transfer conditions are determined using a micro stamp for repairing micro-LEDs. Results show that the aging time should be set to within 60 min, based on measuring the aging time of the flux. Additionally, the micro-LEDs are subjected to a compression test, and the result shows that they should be transferred under 18.4 MPa. Finally, the I-V curves of micro-LEDs processed by the laser and hot plate reflows are measured to compare the electrical properties of the micro-LEDs based on the reflow methods. It was confirmed that the micro-LEDs processed by the laser reflow show similar electrical performance with that processed by the hot plate reflow. The results can provide guidance for the repair of micro-LEDs using micro stamps.

A Study on Evaluation of Shear Strength for Pb-free Solder Joint with Ni-P/Au UBM (Ni-P/Au UBM을 갖는 Pb-free 솔더 접합부의 전단강도 평가에 관한 연구)

  • Cho, Seong-Keun;Yang, Sung-Mo;Yu, Hyo-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.187-192
    • /
    • 2011
  • UBM(Under Bump Metallurgy) is very important for successful realization of Flip-Chip technology. In this study, it is investigated the interfacial reactions between various Sn-Ag solder alloys and Ni-P/Au UBM and Cu plate finish. It is also evaluated the shear strength by using the micro shear-punch test method for Sn-37Pb alloy, binary and ternary alloys of environment-friendly Pb-free solder alloys which are applied in the electronic packages. In terms of interfacial microstructure, the Pb-free solder joints have thicker IMCs than the Sn-Pb solder joints. The thickness of IMC is related to Reflow time. The IMC has been observed to grow with the increase in Reflow time. As a result of the shear test, in case of Max. shear strength, Pb-free solder showed the highest strength value and Sn-37Pb showed the lowest strength value 10 be generally condition of Reflow time.

Metallurgical Reaction Properties between In-15Pb-5Ag Solder and Zu-Ni Surface Finish (In-l5Pb-5Ag 솔더와 Au/Ni 층과의 반응 특성)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • With the contact pad consisted of $0.5{\mu}{\textrm}{m}$ $Au/5{\mu}{\textrm}{m}$ Ni/Cu layers on a conventional ball grid array(BGA) substrate, metallurgical reaction properties between the pad and In-15(wt.%)Pb-5Ag solder alloy were studied after reflow and solid aging. In as-reflow condition, thin AuIn$_2$or Ni$_{28}$In$_{72}$ intermetallic layer was formed at the solder/pad interface according to reflow time. Dissolution of the Au layer into the molten solder was remarkably limited in comparison with eutectic Sn-37Pb alloy. After solid aging of 300 hrs, thickness of In-Ni layer increased to about $2{\mu}{\textrm}{m}$ in the both as-reflow case. It was observed that In atoms diffuse through the AuIn$_2$phase to react with underlaying Ni layer. The metallurgical reaction properties between In-l5Pb-7Ag alloy and Au/Ni surface finish were analysed to result in suppression of Au-embrittlement in the solder joints.

  • PDF

Numerical Analysis on the Die Pad/Epoxy Molding Compound(EMC) Interface Delamination in Plastic Packages under Thermal and Vapor Pressure Loadings

  • Jin Yu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.37-48
    • /
    • 1998
  • The popcorn cracking phenomena in plastic IC packages during reflow soldering are investigated by considering the heat transfer and moisture diffusion through the epoxy molding compound(EMC) along with the mechanics of interface delamination. Heat transfer and moisture diffusion through EMC under die pad are analyzed by finite difference method (FDM)during the pre-conditioning and subsequent reflow soldiering pro-cess and the amounts of moisture mass and vapor pressure at delaminated die pad/ EMC interface are calculated as a function of the reflow soldering time. The energy release rate stress intensity factor and phase angle were obtained under various loading conditions which are thermal crack face vapor pressure and mixed loadings. It was shown that thermal loading was the main driving force for the crack propagation for small crack lengths but vapor pressure loading played more significant role as crack grew.

A Study on the of Intermetallic compound and shear strength of Sn3.5Ag0.7Cu ball with interface position (Sn3.5Ag0.7Cu 솔더의 계면위치에 따른 금속간 화합물과 강도 연구)

  • 신규식;박지호;정재필
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.47-52
    • /
    • 2002
  • Intermetallic compound on the soldered interface plays important role on the bondability and mechanical properties of soldered joint. The formation of intermetallic compounds are influenced by many factors such as temperature, holding time, base metals and so on. On this study the effect of number of reflow times on the intermetallic growth was investigated. For the experimental materials, Sn-3.5Ag-0.7Cu solder ball of 0.3mm diameter and RMA-type flux were used. Thickness of intermetallic compound of solder ball by 2nd reflow showed nearly 60% higher than that of 1st reflow, and shear strength showed 10% higher value. Thickness and shear strength according to the position of interface such as upper side or lower side between two substrates were also investigated.

Reliability of Electroplated Pure Sn Solder Bumps (전해도금으로 형성된 Sn 솔더 범프의 신뢰성)

  • Kim, Yu-Na;Gu, Ja-Myeong;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.205-206
    • /
    • 2006
  • The microstructural evolutions and shear properties of the pure Sn solder bumps with Ni UBMs were investigated during multiple reflows and high temperature storage(HTS) tests. Only a $Ni_3Sn_4$ IMC was found at the bump/Ni UBM interface after 1 reflow. The layer thickness of these IMCs increased with increasing reflow number and testing time. The solder bumps showed a good reliability during multiple reflows and HTS tests.

  • PDF

Effect of Reflow Number and Surface Finish on the High Speed Shear Properties of Sn-Ag-Cu Lead-free Solder Bump (리플로우 횟수와 표면처리에 따른 Sn-Ag-Cu계 무연 솔더 범프의 고속전단 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.11-17
    • /
    • 2009
  • The drop impact reliability comes to be important for evaluation of the life time of mobile electronic products such as cellular phone. The drop impact reliability of solder joint is generally affected by the kinds of pad and reflow number, therefore, the reliability evaluation is needed. Drop impact test proposed by JEDEC has been used as a standard method, however, which requires high cost and long time. The drop impact reliability can be indirectly evaluated by using high speed shear test of solder joints. Solder joints formed on 3 kinds of surface finishes OSP (Organic Solderability Preservation), ENIG (Electroless Nickel Immersion Gold) and ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) was investigated. The shear strength was analysed with the morphology change of intermetallic compound (IMC) layer according to reflow number. The layer thickness of IMC was increased with the increase of reflow number, which resulted in the decrease of the high speed shear strength and impact energy. The order of the high speed shear strength and impact energy was ENEPIG > ENIG > OSP after the 1st reflow, and ENEPIG > OSP > ENIG after 8th reflow.

  • PDF