• Title/Summary/Keyword: Reflected Wave

Search Result 506, Processing Time 0.031 seconds

Spatial Variation of Diffracting Wave Amplitudes on the Front and Lee Sides of the Semi-Infinite Breakwater (반무한방파제 전면과 후면에서 회절파의 공간적인 변화)

  • Jung, Jae-Sang;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.203-210
    • /
    • 2020
  • Spatial variation of diffracting wave amplitudes along a semi-infinite breakwater is investigated using the analytical solution of Penney and Price (1952) for wave diffraction. On the front side of the breakwater, the fluctuation of wave amplitudes due to diffracting waves would cause a wave force greater than that of superposed incident and reflected waves. The diffracting wave phase varies in circular shape from the breakwater tip of (x, y) = (0, 0) whereas the incident and reflected wave phases vary in planar shape. So, the total wave amplitude of the incident (or reflected) waves and the diffracting waves would fluctuate at a position away from the energy discontinuity line. The position (x, y) = (0, y) on the front and lee sides of the breakwater is at a distance y(π/2 - β) of the point on the energy discontinuity line along the diffracting wave crest line. The degree of reduction of the diffraction wave energy is proportional to the distance from the point on the energy discontinuity line along the diffracting wave crest line. Therefore, the diffracting wave amplitudes on the front and lee sides of the breakwater would be inversely proportional to the square root of y(π/2 - β).

Reflected Wave and Transmitted Shock in the Shock-Vortex Interaction (충격파-와동 간섭에서 발생하는 반사파 및 관통 충격파)

  • Chang Se-Myong;Chang Keun-Shik;Lee Soogab
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.139-142
    • /
    • 2002
  • An experimental model and a conceptual model are investigated in this paper with both shock tube experiment and numerical technique. The shock-vortex interaction generated by this model is visualized with various methods: holographic interferometry, shodowgraphy, and numerical computation. In terms of shock dynamics, there are two meaningful physics in the present problem. They are reflective wave from the slip layer at the vortex edge and transmitted shock penetrating the vortex core. The discussion in this study is mainly focused on the two kinds of waves contributing to the quadrupolar pressure distribution around the vortex center during the interaction.

  • PDF

An Analysis of Cross-eye Characteristics for Electronic Protection of Radar (레이다의 전자 보호용 위상정합 특성 분석)

  • Chae Gyoo-Soo;Lim Joong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.52-56
    • /
    • 2006
  • This paper presents a cross-eye characteristics of multi-path wave scattering. Cross-eye method uses the phase differences of multi signals and is used fur electronic protection. When a signal is propagated from transmitter to receiver on the ground surface, direct wave and reflected wave signals are combined in front of the receiving antenna with different phases. To calculate and control the amplitude and phase of reflected signal, we have developed a cross eye electronic protection method for radar system and studied the variation of electric power density.

  • PDF

Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube (충격파관에서 발생하는 반사 충격파와 경계층의 간섭에 대한 연구)

  • Kim, Dong Wook;Kim, Tae Ho;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.481-487
    • /
    • 2017
  • The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

Analysis of Harmonic Wave Generation in Nonlinear Oblique Crack Surface (비선형 경사 균열면에서의 고조파 발생 특성 해석)

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.376-387
    • /
    • 2012
  • Based on the nonlinear spring model coupled with perturbation method, 2nd harmonic waves generated by oblique incident ultrasound on nonlinear crack interface were calculated and investigated. Reflected and transmitted waves from the interface were determined and analyzed at various angle of incidence for the cracks with different interfacial stiffness in order to estimate the 2nd harmonic generation of incident ultrasound. It was shown in computer simulation that the 2nd harmonic components changed much with the increase of incidence angle in both reflected and transmitted wave, but became very small when the incident angle approached toward 90 degree. It can be concluded that the 2nd harmonic component of reflected wave has a meaningful amplitude as much as the transmitted 2nd harmonic wave from partly closed crack.

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel (터널내 교행 열차의 풍압에 대한 특성법 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.

Wave propagation in a concrete filled steel tubular column due to transient impact load

  • Ding, Xuanming;Fan, Yuming;Kong, Gangqiang;Zheng, Changjie
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.891-906
    • /
    • 2014
  • This study aims to present a three dimensional finite element model to investigate the wave propagation in a concrete filled steel tubular column (CFSC) due to transient impact load. Both the concrete and steel are regarded as linear elastic material. The impact load is simulated by a semi sinusoidal impulse. Besides the CFSC models, a concrete column (CC) model is established for comparing under the same loading condition. The propagation characteristics of the transient waves in CFSC are analyzed in detail. The results show that at the intial stage of the wave propagation, the velocity waves in CFSC are almost the same as those in CC before they arrive at the steel tube. When the waves reach the column side, the velocity responses of CFSC are different from those of CC and the difference is more and more obvious as the waves travel down along the column shaft. The travel distance of the wave front in CFSC is farther than that in CC at the same time. For different wave speeds in steel and concrete material, the wave front in CFSC presents an arch shape, the apex of which locates at the center of the column. Differently, the wave front in CC presents a plane surface. Three dimensional effects on top of CFSC are obvious, therefore, the peak value and arrival time of incident wave crests have great difference at different locations in the radial direction. High-frequency waves on the waveforms are observed. The time difference between incident and reflected wave peaks decreases significantly with r/R when r/R < 0.6, however, it almost keeps constant when $r/R{\geq}0.6$. The time duration between incident and reflected waves calculated by 3D FEM is approximately equal to that calculated by 1D wave theory when r/R is about 2/3.

Analysis of Wave Fields over Submerged Breakwaters (잠제 주변의 파랑장 해석)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.2
    • /
    • pp.95-106
    • /
    • 1999
  • A numerical model is represented to calculate the wave fields such as the reflected waves, the transmitted waves and the depth-averaged velocities over submerged breakwaters for the normally incident wave trains of nonlinear mono-chromatic wave and solitary wave. The finite amplitude shallow water equations with the effects of bottom friction are solved numerically in time domain using an explicit dissipative Lax-Wendroff finite difference method. The numerical model is verified by comparisons with the other numerical results and the measured data. It is found that the submerged breakwater may be more useful for protecting the energies of monochromatic waves rather than solitary waves. Finally, the armor stability on submerged breakwater is indirectly analyzed using the hydrodynamic characteristics of flow fields.

  • PDF

Analytical Studies for Estimating Soil Properties from the SPT Dynamic Signals (SPT 동적신호를 이용한 지반정보 추정에 관한 해석적 연구)

  • 이병식;김영수;김범상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.423-430
    • /
    • 2002
  • A feasibility of a trial test method was evaluated analytically, in which the elastic modulus of a soil deposit was tried to estimate by analyzing dynamic signals measured during conducting the SPT. If there existed a reliable relationship between the impedance ratio of a rod to a soil and the amplitude ratio of a reflected to an incident wave signal at the tip of steel rod contacting the soil surface, it was expected that one could determine the impedance of soil, and then roughly estimate the elastic modulus from the impedance. For a simple rod-soil system, the existence of the relevant relationship was verified in this study by analyzing computed wave signals propagating up and down through the rod. On the basis of these results, thus, a potential of the test method to practical applications could be seen. However, apparent theoretical shortcomings possessed in this approach were also realized since the soil part had an unconfined contact area where contacted with the rod. Therefore, it was concluded that further studies needed to be conducted, in which the reliable theoretical relationship between the impedance and the amplitude ratio as well as the effective contacting soil area contributing to wave reflection should be justified.

  • PDF

Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids

  • Anya, Augustine Igwebuike;Khan, Aftab
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.605-614
    • /
    • 2019
  • The present paper seeks to investigate propagation and reflection of waves at free surfaces of homogeneous, anisotropic and rotating micropolar fibre-reinforced medium with voids. It has been observed that, in particular when P-wave is incident on the free surface, there exist four coupled reflected plane waves traveling in the medium; quasi-longitudinal displacement (qLD) wave, quasi-transverse displacement (qTD) wave, quasi-transverse microrotational wave and a wave due to voids. Normal mode Analysis usually called harmonic solution method is adopted in concomitant with Snell's laws and appropriate boundary conditions in determination of solution to the micropolar fibre reinforced modelled problem. Amplitude ratios which correspond to reflected waves in vertical and horizontal components are presented analytically. Also, the Reflection Coefficients are presented using numerical simulated results in graphical form for a particular chosen material by the help of Mathematica software. We observed that the micropolar fibre-reinforced, voids and rotational parameters have various degrees of effects to the modulation, propagation and reflection of waves in the medium. The study would have impact to micropolar fibre-reinforecd rotational-acoustic machination fields and future works about behavior of seismic waves.