DOI QR코드

DOI QR Code

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel

터널내 교행 열차의 풍압에 대한 특성법 해석

  • Received : 2013.07.22
  • Accepted : 2013.10.15
  • Published : 2013.12.31

Abstract

Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.

열차가 터널에 고속으로 진입하면, 압력파가 발생한다. 열차 선두부의 진입에 의하여 발생한 압축파는 터널을 따라 진행되어 터널 출구에서 반사되어 팽창파로 되돌아오며, 후미부의 진입에 의하여 발생한 팽창파도 터널을 따라 전파되어 터널 출구에서 압축파로 반사되어 터널 입구로 되돌아 온다. 열차 선두부 및 후미부에 의하여 발생한 이러한 압력파는 터널 입구 및 출구에서 각각 반사되어 터널 내부를 왕복하며, 차량 객실에 탑승한 승객들에게는 이명감을 일으키고, 터널 출구에서는 환경소음의 일종인 미기압파를 발생시킨다. 터널에서의 큰 압력 변동은 터널의 최적 단면적 설계에도 주요 인자로 고려되고 있으며, 차체의 반복 피로 하중으로 작용하므로, 이에 대한 정량적 및 정성적 분석이 필요하다. 본 연구에서는 고정 격자계를 이용하여 개발한 특성 해법을 교행하는 열차에 대하여 적용하였으며, 교행시의 열차 선두부 및 후미부의 경계 조건식을 개발하여, X-t선도와 같이 해석하였다. 해석 결과, 교행 열차의 특정 터널진입 시간에 압력파 간의 상쇄가 일어남을 알 수 있었다.

Keywords

References

  1. P.K.H. Wu (2000) Prediction of pressure wave generation by high-speed train entering tunnel using a commercial CFD code, BHR Group 2000 Vehicle Tunnels, 1, pp. 767-777.
  2. M. Suzuki (2000) Aerodynamic Force acting on Train in Tunnel, RTRI Report, 14(9), pp. 37-42.
  3. H.B. Kwon, T.Y. Kim, D.H. Lee, M.S. Kim (2003) Numerical simulation of unsteady compressible flows induced by a highspeed train passing through a tunnel, Proc.Inst.Mech.Engrs. Part F:J Rail and Rapid Transit., 217, pp. 111-124. https://doi.org/10.1243/095440903765762850
  4. G. Rudinger (1955) Wave Diagrams for Nonsteady Flow in Ducts, D.Van Nostrand Co. Inc., New York.
  5. A. Yamamoto. (1983) Aerodynamics of Train and Tunnel, RTRI Report, 1230, pp. 1-70.
  6. T. Maeda (1998) Aerodynamic Characteristics of Train and Countermeasures for Decreasing Micro-pressure Wave, RTRI Report, 20, pp. 196-229.
  7. A.E. Vardy, B. Dayman (1979) Alleviation of Tunnel Entry Pressure Transients: Theoretical Modelling and Experimental Correlation, 3rd Int. Symp.on the Aerodynamics and Ventilation of Vehicle Tunnels, pp. 363-375.
  8. H.-D. Kim (1997) Aerodynamic Analysis of a Train Running in a Tunnel(1)-Aerodynamics of One-Train, Journal of Korean society of mechanical engineers(B), 21(8), pp.963-972.
  9. S.W. Nam, H.-B. Kwon, S.-H. Yun (2012) Characteristics Method Analysis of Wind Pressure of Train running in Tunnel, Journal of Korean society for railway, 15(5), pp. 436-441. https://doi.org/10.7782/JKSR.2012.15.5.436

Cited by

  1. A Study on Estimation of Air Tightness for Train vol.19, pp.5, 2016, https://doi.org/10.7782/JKSR.2016.19.5.576
  2. Study of the Air-tightness Requirement Decisions of GTX Trains vol.18, pp.6, 2015, https://doi.org/10.7782/JKSR.2015.18.6.513