DOI QR코드

DOI QR Code

Analysis of Harmonic Wave Generation in Nonlinear Oblique Crack Surface

비선형 경사 균열면에서의 고조파 발생 특성 해석

  • 김노유 (한국기술교육대학교 메카트로닉스공학부) ;
  • 양승용 (한국기술교육대학교 기계공학부)
  • Received : 2012.06.25
  • Accepted : 2012.08.10
  • Published : 2012.08.30

Abstract

Based on the nonlinear spring model coupled with perturbation method, 2nd harmonic waves generated by oblique incident ultrasound on nonlinear crack interface were calculated and investigated. Reflected and transmitted waves from the interface were determined and analyzed at various angle of incidence for the cracks with different interfacial stiffness in order to estimate the 2nd harmonic generation of incident ultrasound. It was shown in computer simulation that the 2nd harmonic components changed much with the increase of incidence angle in both reflected and transmitted wave, but became very small when the incident angle approached toward 90 degree. It can be concluded that the 2nd harmonic component of reflected wave has a meaningful amplitude as much as the transmitted 2nd harmonic wave from partly closed crack.

비선형 스프링 모델과 섭동법을 기초로 비선형 균열면에 경사 입사된 초음파에 의해 발생되는 2차 고조파 초음파의 크기를 계산하였다. 비선형 균열계면에서 만들어지는 반사파와 굴절파의 기본주파수 성분과 2차 고조파 성분의 크기를 입사각과 균열계면의 계면강성을 변화키면서 조사하였다. 계면강성에 관계없이 균열계면이 초음파 진행 방향과 비슷한 경우 반사와 굴절파 모두에서 2차 고조파의 발생은 거의 없었지만, 그렇지 않은 경우에는 계면 입사각은 물론 계면 강성에 따라 2차 고조파의 크기는 크게 변화하였다. 투과파는 물론 반사파에서도 2차 고조파 성분이 유의성 있게 발생됨을 수치 해석을 통해 확인하였다.

Keywords

References

  1. I. Y. Solodov, "Ultrasonics of non-linear contacts: propagation, reflection, and NDE applications," Ultrasonics, Vol. 36, pp. 383-390 (1998) https://doi.org/10.1016/S0041-624X(97)00041-3
  2. C. Pecorari and S. I. Rokhlin, "Elasto-plastic micromechanical model for determination of dynamic stiffness and real contact area from ultrasonic measurements," Wear, Vol. 262, pp. 905-913 (2007) https://doi.org/10.1016/j.wear.2006.08.018
  3. S. Biwa, S. Hiraiwa and E. Matsumoto, "Stiffness evaluation of contacting surfaces by bulk and interface waves," Ultrasonics, Vol. 47, pp. 123-129 (2007) https://doi.org/10.1016/j.ultras.2007.08.005
  4. S. Biwa, S. Hiraiwa and E. Matsumoto, "Experimental and theoretical study of harmonic generation at contacting interface," Ultrasonics, Vol. 44, pp. 1319-1322 (2006) https://doi.org/10.1016/j.ultras.2006.05.010
  5. K. Kawashima, et al., "Nonlinear ultrasonic imaging of imperfectly bonded interfaces," Ultrasonics, Vol. 44, pp. 1329-1333 (2006) https://doi.org/10.1016/j.ultras.2006.05.011
  6. N. Kim, K. Jhang and T. Lee. "Reflection and transmission of acoustic waves across nonlinear contact interface," Journal of the Korean Society for Nondestructive Testing, Vol. 28, No. 3, pp. 292-301 (2008)
  7. N. Kim and S. Yang, "Reflection and transmission of acoustic waves across contact interface," Journal of the Korean Society for Nondestructive Testing, Vol. 28, No. 3, pp. 292-300 (2008)
  8. 양승용, 김노유, "균열의 고조파 발생에 대한 유한요소해석", 한국전산구조공학회 논문집, 제22권, 6호, pp. 573-577 (2009)
  9. J. D. Achenbach, "Wave Propagation in Elastic Solids," North-Holland Pub. Co. (1973)
  10. Nohyu Kim and Y. J. Song, "Ultrasonic Estimation of Interfacial Stiffness for Contacting Surfaces", International Conference on Experimental Mechanics(ICEM), Kuala Lumpur, Malaysia, Nov. 29-Dec.1, pp. 157-158 (2010)