• Title/Summary/Keyword: Reference Stress Method

Search Result 239, Processing Time 0.022 seconds

A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.153-165
    • /
    • 2020
  • The effect of soil foundation plays active role in optimum design of steel space frames when included. However, its influence on design can be calculated after a long iterative procedure. So it requires longer computer time and more computational effort if it is done properly. The main purpose of this study is to investigate how these effects can be calculated in more practical way in a shorter time. The effects of semi-rigid column bases are taken into account in optimum design of steel space frames. This study is carried out by using JAYA algorithm which is a novel and practical method based on a single revision equation. The displacement, stress and geometric size constraints are considered in the optimum design. A computer program is coded in MATLAB to achieve corporation with SAP2000-OAPI (Open Application Programming Interface) for optimum solutions. Four different steel space frames including soil structure interaction taken from literature are investigated according to different semi-rigidly supported models depending on different rotational stiffness values. And the results obtained from analyses are compared with the results available in reference studies. The results of the study show that semi-rigidly supported systems in the range of appropriate rotational stiffness values offer practical solutions in a very short time. And close agreement is obtained with the studies on optimum design of steel space frames including soil effect underneath.

Review of seismic studies of liquid storage tanks

  • Zhao, Ming;Zhou, Junwen
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • The academic research works about liquid storage tanks are reviewed for the purpose of providing valuable reference to the engineering practice on their aseismic design. A summary of the performance of tanks during past earthquakes is described in this paper. Next, the seismic response of tanks under unidirectional earthquake is reported, supplemented with the dynamic response under multidirectional motions. Then, researches on the influence of soil-structure interaction are brought out to help modify the seismic design approach of tanks in different areas with variable properties of soils. Afterwards, base isolation systems are reported to demonstrate their effectiveness for the earthquake-resistant design of liquid storage tanks. Further, researches about the liquid-structure interaction are reviewed with description of simplified models and numerical analytical methods, some of which consider the elastic effect of tank walls. Moreover, the liquid sloshing phenomenon on the hydrodynamic behaviors of tanks is presented by various algorithms including grid-based and meshfree method. And then the impact of baffles in changing the dynamic characteristics of the liquid-structure system is raised, which shows the energy dissipation by the vortex motion of liquid. In addition, uplifting effect is given to enhance the understanding on the capacity of unanchored tanks and some assessment of their development. At last, the concluding remarks and the aspects of extended research in the field of liquid storage tanks under seismic loads are provided, emphasizing the thermal stress analysis, the replaceable system for base isolation, the liquid-solid interaction and dynamic responses with stochastic excitations.

Temperature effect analysis of a long-span cable-stayed bridge based on extreme strain estimation

  • Yang, Xia;Zhang, Jing;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • The long-term effect of ambient temperature on bridge strain is an important and challenging problem. To investigate this issue, one year data of strain and ambient temperature of a long-span cable-stayed bridge is studied in this paper. The measured strain-time history is decomposed into two parts to obtain the strains due to vehicle load and temperature alone. A linear regression model between the temperature and the strain due to temperature is established. It is shown that for every $1^{\circ}C$ increase in temperature, the stress is increased by 0.148 MPa. Furthmore, the extreme value distributions of the strains due to vehicle load, temperature and the combination effect of them during the remaining service period are estimated by the average conditional exceedance rate approach. This approach avoids the problem of declustering of data to ensure independence. The estimated results demonstrate that the 95% quantile of the extreme strain distribution due to temperature is up to $1.488{\times}10^{-4}$ which is 2.38 times larger than that due to vehicle load. The study also indicates that the estimated extreme strain can reflect the long-term effect of temperature on bridge strain state, which has reference significance for the reliability estimation and safety assessment.

The study of determination proper nose properties, used for I..L.M constructing economic long spans bridge. (경제성과 장대경간 구성을 구현할 수 있는 I.L.M교량에 사용되는 추진코의 적정제원 산정에 관한 연구)

  • 박상현;이승주;김찬녕;심재수;황의승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.853-858
    • /
    • 2001
  • The PSC bridge being built by ILM may have greater bending moment during its construction rather than after completion. When it occurs, Engineer should suggest to reduce stress-resultants than to make bigger cross-section with considering stability ,economics, and proper span-to-depth ratio. The used method is to install extruded nose at the end of girder. It substitutes the weighted segment for the light. From the reference, the stiffness of extruded nose, is 1/10 of the main girder, and the length is 60 to 70% of the length of the span, with little justification. In this study, the proper length and stiffness of the nose element is determined by the parametric study and idealizing procedure. The results about the extruded nose through the mixing of the parameter of its stiffness and length, the proper length of extruded nose is 80% of the longest span and the proper stiffenss is 13% of the bending stiffness of the superstructure and the proper length of extruded nose is 70% of the longest span and the proper stiffness is 9.5% of the bending stiffness of the superstructure.

  • PDF

A Study on the Health Care of the Aged in View of the Kings of the Joseon Dynasty (조선 군왕의 삶으로 본 고령화시대 건강증진 방법에 대한 고찰)

  • Lee, Hai-Woong;Kim, Hoon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.2
    • /
    • pp.146-160
    • /
    • 2006
  • Background and Aim : As one of the World Cultural Heritage, Joseonwangjosillok is a history book including general state affair, social affair, economy, astronomical and atmospheric phenomena, art, music, eat. as well as the very private life of the king. With Joseonwangjosillok, we will look into health and death of the king and apply it to the regimen and recommended life-style of the aged. Materials and Method : With the archive of Joseonwangjosillok and medical text books such as Donguibogam Huang Di Nei Jing as reference, we tried to inquire the work and life of the kings of the Joseon dynasty, find connection with the regimen recommended life-style, and suggest medical guidelines for the aged as geriatric society is coming. Result : The Kings of the Joseon dynasty had omnipotent power, so that they lived quite much better lift than common people. But their average lifetime is estimated to be no better than that of ethers. Probably overwork, mental stress, rich fatty diet and lack of exercise took healthy life from them. Conclusion : Even if they had unlimited power, the state-of-the-art medical treatment hardly helped the Kings live better and longer life than common people. To keep and promote healthy lift for the aged, they need moderate exercise, appropriate rest, balanced diet, seen dissolving with reasonable environment.

  • PDF

The Design of an Improved ZCZVS Resonant Type Converter by Digital I-PD Phase-shift Controller (디지털 I-PD 위상 쉬프트 제어기를 가진 개선된 영전류.영전압 스위칭 공진형 컨버터의 설계)

  • Kim, Young-Moon;Ahn, In-Mo;Kim, Hae-Jae;Shin, Dong-Ryul;Kim, Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.66-70
    • /
    • 2000
  • This paper deal with a design and a constant output power control of Zero Current Zero Voltage Switching(ZCZVS) resonant type DC-DC converter by a digital I-PD phase shift controller. When the DC-DC converter for a high density and a high effect control is operated in high speed switching, the switching loss and switching stress of the switching devices are increased. So, the ZCZVS method, which has the phase shift control with the digital I-PD controller, must be use in order to reduce its. And the constant output power voltage that controlled by the digital I-PD controller tracks a reference without steady state error in variable input voltage. The validity of control strategy that proposed is verified experimental results by the Digital Signal Processor TMS320C32.

  • PDF

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Han, Seok-Bung;Song, Ki-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.9-9
    • /
    • 2010
  • In this paper, High Brightness LED driver IC using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses $1{\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre(Cadence) simulation.

  • PDF

Method to measure $K_ I$,$K_ I1$ and J-integral for CTS specimen under mixed mode loading (혼합모드 하중을 받는 CTS 시험편에서 $K_ I$,$K_ I1$ 와 J-적분의 측정방법)

  • Hong, K.J;Kang, K.J
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3498-3506
    • /
    • 1996
  • A loading device to be used in fracture experiment is presented. It's loading angle can be adjusted from $-45^{\circ}$ to $105^{\circ}$ at intervals of $15^{\circ}$ for a CTS ( compact tension-shear) specimen, so that it is to be useful to measure mixed mode toughness. The equations to give the $K_ I$, $K_ I1$ and J-integral for the experiment are evluated though finite elemetn analysis in which the loading procedure is simulated and the behaviors of the specimen such as load-displacement curve are estimated. In the course of the evaluation the values $K_ I$, $K_ I1$ and J-integral calculated through recentrly released numerical methods are employed as the reference ones.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman;Rasheed, Adil;Kvamsdal, Trond
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.