Browse > Article
http://dx.doi.org/10.12989/was.2019.29.6.405

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel  

Siddiqui, M. Salman (Department of Mathematical Sciences, Norwegian University of Science and Technology)
Rasheed, Adil (Department of Mathematics and Cybernetics, SINTEF Digital)
Kvamsdal, Trond (Department of Mathematical Sciences, Norwegian University of Science and Technology)
Publication Information
Wind and Structures / v.29, no.6, 2019 , pp. 405-416 More about this Journal
Abstract
Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.
Keywords
wind energy; aerodynamics; wind tunnel tests; computational fluid dynamics; high fidelity simulations;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Li, S.W., Hu, Z.Z., Tse, K.T. and Weerasuriya, A.U. (2016), "Wind direction field under the influence of topography: part II: CFD investigations", Wind Struct., 22(2), 477-501. : http://dx.doi.org/10.12989/was.2016.22.4.477.   DOI
2 Luhur, M.R., Manganhar, A.L., Solangi, K.H., Jakhrani, A.Q., Mukwana, K.C. and Samo, S.R. (2016), "A review of the stateof- the-art in aerodynamic performance of horizontal axis wind turbine", Wind Struct., 22(1), 1-16. http://dx.doi.org/10.12989/was.2016.22.1.001.   DOI
3 Martinez Tossas, L.A., Churchfield, M.J. and Leonardi, S. (2015), "Large eddy simulations of the flow past wind turbines: actuator line and disk modeling", Wind Energy, 18(6), 1047-1060. https://doi.org/10.1002/we.1747.   DOI
4 Mo, J.O., Choudhry, A., Arjomandi, M. and Lee, Y.H. (2013), "Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model", J. Wind Eng. Ind. Aerod., 112, 11-24. https://doi.org/10.1016/j.jweia.2012.09.002.   DOI
5 Nordanger, K., Holdahl, R., Kvamsdal, T., Kvarving, A.M. and Rasheed, A. (2015), "Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric incompressible Navier-Stokes solver with the Spalart-Allmaras turbulence model", Comput. Method. Appl. M., 290, 183-208. https://doi.org/10.1016/j.cma.2015.02.030.   DOI
6 Nordanger, K., Holdahl, R., Kvarving, A.M., Rasheed, A. and Kvamsdal, T. (2015), "Implementation and comparison of three isogeometric Navier-Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number", Comput. Method. Appl. M., 284, 664-688. https://doi.org/10.1016/j.cma.2014.10.033.   DOI
7 Ozdogan, M., Sungur, B., Namli, L. and Durmus, A. (2017), "Comparative study of turbulent flow around a bluff body by using two and three-dimensional CFD", Wind Struct., 25(6), 537-549. https://doi.org/10.12989/was.2017.25.6.537.   DOI
8 Siddiqui, M.S., Fonn, E., Kvamsdal, T. and Rasheed, A. (2019), "Finite-volume high-fidelity simulation combined with finiteelement- based reduced-order modeling of incompressible flow problems", Energies, 12(7), 1271-1293. https://doi.org/10.3390/en12071271.   DOI
9 Ronsten, G. (1992), "Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations", J. Wind Eng. Ind. Aerod., 39(1-3), 105-118. https://doi.org/10.1016/0167-6105(92)90537-K.   DOI
10 Sanderse, B., van der Pijl, S. amd Koren, B. (2011), "Review of computational fluid dynamics for wind turbine wake aerodynamics", Wind Energy, 14(7), 799-819. https://doi.org/10.1002/we.458.   DOI
11 Siddiqui, M.S., Rasheed, A., Kvamsdal, T. and Kvamsdal, T. (2017), "Quasi-static and dynamic numerical modeling of full scale NREL 5MW wind turbine", Energy Procedia, 137, 460-467. https://doi.org/10.1016/j.egypro.2017.10.370.   DOI
12 Siddiqui, M.S., Rasheed, A., Kvamsdal, T. and Tabib, M. (2015), "Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine", Energy Procedia, 80, 312-320. https://doi.org/10.1016/j.egypro.2015.11.435.   DOI
13 Siddiqui, M.S., Rasheed, A., Tabib, M. and Kvamsdal, T. (2019), "Numerical investigation of modeling frameworks and geometric approximations on NREL 5 MW wind turbine", Renew. Energ., 132, 1058-1075. https://doi.org/10.1016/j.renene.2018.07.062.   DOI
14 Snel, H., Schepers, J.G. and Montgomerie, B. (2007), "The MEXICO project (model experiments in controlled conditions): The database and first results of data processing and interpretation", J. Physics, 75, 012014.   DOI
15 Somers, D.M. (2005), "The S825 and S826 airfoils", Techincal Report NREL/SR-500-36344, National Renewable Energy Laboratory, CO, USA.
16 Sorensen, N.N., Bechmann, A., Boudreault, L.E., Koblitz, T. and Sogachev, (2013), "A CFD applications in wind energy using RANS",CFD for atmospheric flows and wind engineering, von Karman Institute for Fluid Dynamics, Lecture Series, No. 2013-02.
17 Alexandros, M. and Chick, J. (2013), "Validation of a CFD model of wind turbine wakes with terrain effects", J. Wind Eng. Ind. Aerod., 123, 12-29. https://doi.org/10.1016/j.jweia.2013.08.009.   DOI
18 ANSYS Academic Research, 2013. Release 15. ANSYS FLUENT Theory Guide Inc.
19 Cleaver, D. J., Wang, Z. and Gursul, I. (2010), "Survey of modelling methods for wind turbine wakes and wind farms", Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, June.
20 Sorensen, J., Shen, W.Z. and Munduate, X. (1998), "Analysis of wake states by a full-field actuator disc model", Wind Energy, 1, 73-88. https://doi.org/10.1002/(SICI)1099-1824(199812)1:2<73::AID-WE12>3.0.CO;2-L.   DOI
21 Sorensen, N.N., Michelsen, J.A. and Schreck, S. (2002), "Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80ft x 120ft wind tunnel", Wind Energy, 5, 151-169. DOI: 10.1002/we.64.   DOI
22 Stevens, R.J., Tossas, L.A.M. and Meneveau, C. (2018), "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments", Renew. Energ., 116, 470-478. https://doi.org/10.1016/j.renene.2017.08.072.   DOI
23 Troldborg, N., Sorensen, J.N. and Mikkelsen, R. (2007), "Actuator line simulation of wake of wind turbine operating in turbulent inflow", J. Physics, 75, 012063.   DOI
24 Troldborg, N., Zahle, F. and Sorensen, N.N. (2015), "Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model", Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida.
25 Wilcox, D. (1994), "Simulation of transition with a two-equation turbulence model", AIAA J., 32, 247-255.   DOI
26 Fonn, E., Brummelen, H.V., Kvamsdal, T. and Rasheed, A. (2019), "Fast divergence-conforming reduced basis methods for steady Navier-Stokes flow", Comput. Method. Appl. M., 346, 486-512. https://doi.org/10.1016/j.cma.2018.11.038.   DOI
27 Yang, H., Shen, W., Xu, H., Hong, Z. and Liu, C. (2014), "Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD", Renew. Energ, 70, 107-115. https://doi.org/10.1016/j.renene.2014.05.002   DOI
28 Zhang, Y., Gillebaart, T., van Zuijlen, A., van Bussel, G. and Bijl, H. (2017), "Experimental and numerical investigations of aerodynamic loads and 3D flow over non-rotating MEXICO blades", Wind Energy, 20(4), 585-600. https://doi.org/10.1002/we.2025.   DOI
29 Crasto, G., Gravdahl, A., Castellani, F. and Piccioni, E. (2012), "Wake modeling with the actuator disc concept", Energy Procedia, 24, 385-392. https://doi.org/10.1016/j.egypro.2012.06.122.   DOI
30 Crespo, A., Hernandez, J. and Frandsen, S. (1999), "Survey of modelling methods for wind turbine wakes and wind farms", Wind Energy, 2(1), 1-24. https://doi.org/10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7.   DOI
31 Ilhan, A., Bilgili, M. and Sahin, B. (2018), "Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine", Wind Struct., 27(3), 21-36. https://doi.org/10.12989/was.2018.27.3.187.
32 Jasak, H. (2009), "Dynamic mesh handling in OpenFoam", Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida.
33 Krogstad, P.A., Sæ tran, L. and Adaramola, M.S. (2015), "Blind test 3 calculations of the performance and wake development behind two in-line and offset model wind turbines", J. Fluids Struct., 52, 65-80. https://doi.org/10.1016/j.jfluidstructs.2014.10.002.   DOI
34 Keerthana, M. and Harikrishna, P. (2017), "Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence", Wind Struct., 25(3), 301-328. https://doi.org/10.12989/was.2017.25.3.301.   DOI
35 Krogstad, P.A. and Eriksen, P.E. (2013), "Blind test calculations of the performance and wake development for a model wind turbine", Renew. Energ., 50, 325-333. https://doi.org/10.1016/j.renene.2012.06.044.   DOI
36 Krogstad, P.A. and Sæ tran, L. (2012), "An experimental and numerical study of the performance of a model turbine", Wind Energy, 15(3), 443-457. https://doi.org/10.1002/we.482.   DOI
37 Zhong, H., Du, P., Tang, F. and Wang, L. (2015), "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method", Appl. Energy, 144, 224-233. https://doi.org/10.1016/j.apenergy.2015.01.082.   DOI
38 Zhong, H., Du, P., Tang, F. and Wang, L. (2015), "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method", Appl. Energy, 144, 224-233. https://doi.org/10.1016/j.apenergy.2015.01.082.   DOI