• 제목/요약/키워드: Reeb parallel structure Jacobi operator

검색결과 6건 처리시간 0.017초

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin;Suh, Young Jin
    • 대한수학회지
    • /
    • 제58권4호
    • /
    • pp.895-920
    • /
    • 2021
  • In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

Hopf Hypersurfaces in Complex Two-plane Grassmannians with Generalized Tanaka-Webster Reeb-parallel Structure Jacobi Operator

  • Kim, Byung Hak;Lee, Hyunjin;Pak, Eunmi
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.525-535
    • /
    • 2019
  • In relation to the generalized Tanaka-Webster connection, we consider a new notion of parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians and prove the non-existence of real hypersurfaces in $G_2({\mathbb{C}}^{m+2})$ with generalized Tanaka-Webster parallel structure Jacobi operator.

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim;Hyunjin Lee;Young Jin Suh
    • 대한수학회지
    • /
    • 제61권2호
    • /
    • pp.309-339
    • /
    • 2024
  • Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

GENERALIZED KILLING STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN COMPLEX HYPERBOLIC TWO-PLANE GRASSMANNIANS

  • Lee, Hyunjin;Suh, Young Jin;Woo, Changhwa
    • 대한수학회지
    • /
    • 제59권2호
    • /
    • pp.255-278
    • /
    • 2022
  • In this paper, first we introduce a new notion of generalized Killing structure Jacobi operator for a real hypersurface M in complex hyperbolic two-plane Grassmannians SU2,m/S (U2·Um). Next we prove that there does not exist a Hopf real hypersurface in complex hyperbolic two-plane Grassmannians SU2,m/S (U2·Um) with generalized Killing structure Jacobi operator.

THE UNIT TANGENT SPHERE BUNDLE WHOSE CHARACTERISTIC JACOBI OPERATOR IS PSEUDO-PARALLEL

  • Cho, Jong Taek;Chun, Sun Hyang
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1715-1723
    • /
    • 2016
  • We study the characteristic Jacobi operator ${\ell}={\bar{R}({\cdot},{\xi}){\xi}$ (along the Reeb flow ${\xi}$) on the unit tangent sphere bundle $T_1M$ over a Riemannian manifold ($M^n$, g). We prove that if ${\ell}$ is pseudo-parallel, i.e., ${\bar{R}{\cdot}{\ell}=L{\mathcal{Q}}({\bar{g}},{\ell})$, by a non-positive function L, then M is locally flat. Moreover, when L is a constant and $n{\neq}16$, M is of constant curvature 0 or 1.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.