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THE UNIT TANGENT SPHERE BUNDLE WHOSE

CHARACTERISTIC JACOBI OPERATOR IS

PSEUDO-PARALLEL

Jong Taek Cho and Sun Hyang Chun

Abstract. We study the characteristic Jacobi operator ℓ = R̄(·, ξ)ξ
(along the Reeb flow ξ) on the unit tangent sphere bundle T1M over
a Riemannian manifold (Mn, g). We prove that if ℓ is pseudo-parallel,
i.e., R̄ · ℓ = LQ(ḡ, ℓ), by a non-positive function L, then M is locally flat.
Moreover, when L is a constant and n 6= 16, M is of constant curvature
0 or 1.

1. Introduction

It is intriguing to study the interplay between Riemannian manifolds and
their unit tangent sphere bundles. In particular, we are interested in the stan-
dard contact metric structure (η, ḡ, φ, ξ) of a unit tangent sphere bundle T1M
over a given Riemannian manifold (M, g). It is remarkable that the character-
istic vector field ξ on T1M contains a crucial information about M . In fact, all
the geodesics in M are controlled by the geodesic flow on T1M which is pre-
cisely given by ξ. Apart from the defining structure tensors η, ḡ, φ and ξ, the
so-called characteristic Jacobi operator ℓ = R̄(·, ξ)ξ plays a fundamental role
in contact Riemannian geometry, especially in the unit tangent sphere bundle
(cf. [2]). Here, R̄ denotes the Riemannian curvature tensor determined by ḡ.
In Section 3, we prove that the characteristic Jacobi operator ℓ vanishes if and
only if M is locally flat (Proposition 2).

On the other hand, for a Riemannian manifold (M̄, ḡ) a tensor field F of
type (1, 3);

F : X(M̄)× X(M̄)× X(M̄) → X(M̄)

is said to be curvature-like provided that F has the symmetric properties of
R̄. Here X(M̄) is the Lie algebra of all vector fields on M̄ . For example,
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(X̄ ∧ Ȳ )Z̄ = ḡ(Ȳ , Z̄)X̄ − ḡ(Z̄, X̄)Ȳ , X̄, Ȳ , Z̄ ∈ X(M̄), defines a curvature-
like tensor field on M̄ . Note that a Riemannian manifold (M̄, ḡ) of constant
curvature c satisfies the formula R̄(X̄, Ȳ ) = c(X̄ ∧ Ȳ ).

As is well-known, a curvature-like tensor field F acts on the algebra T 1
s (M̄)

of all tensor fields on M̄ of type (1, s) as a derivation (cf. [5]). Then P is said
to be semi-parallel if R̄ ·P = 0, where · means that R̄ acts as a derivation on P .
Pseudo-parallelism is defined as the natural generalization. Namely, P is said
to be pseudo-parallel if R̄ · P = LQ(ḡ, P ) for some function L, where Q(ḡ, P )
is defined by

Q(ḡ, P )(X1, . . . , Xs;Y,X) = (X ∧ Y )P (X1, . . . , Xs)

−
s∑

j=1

P (X1, . . . , (X ∧ Y )Xj , . . . , Xs).

In the present paper, we study pseudo-parallelism of the characteristic Jacobi
operator ℓ on the unit tangent sphere bundle T1M : R̄ · ℓ = LQ(ḡ, ℓ) for a
function L on T1M . Then we easily see that vanishing ℓ implies pseudo-parallel
ℓ. Moreover, pseudo-parallel ℓ includes the case of semi-parallel ℓ (L = 0). The
main purpose of the present paper is to prove the following.

Main Theorem. Let (M, g) be an n-dimensional Riemannian manifold and

T1M be the unit tangent sphere bundle over M with the standard contact metric

structure (η, ḡ, φ, ξ). Suppose that the characteristic Jacobi operator ℓ of T1M
is pseudo-parallel by a function L on T1M . Then we have the following results:

(i) if L ≤ 0, then M is locally flat,

(ii) if L is constant and n 6= 16, then M is of constant curvature 0 or 1.

Conversely, for the unit tangent sphere bundle over a space of constant curva-

ture c = 0 or c = 1, the characteristic Jacobi operator ℓ is pseudo-parallel with

L = 0 or L = 1, respectively.

2. Preliminaries

All manifolds in the present paper are assumed to be connected and of class
C∞. We start by collecting some fundamental material about contact metric
geometry. We refer to [1] for further details. A (2n+ 1)-dimensional manifold
M̄2n+1 is said to be a contact manifold if it admits a global 1-form η such that
η∧(dη)n 6= 0 everywhere. Given a contact form η, we have a unique vector field
ξ, the characteristic vector field, satisfying η(ξ) = 1 and dη(ξ, X̄) = 0 for any
vector field X̄ on M̄ . It is well-known that there exists a Riemannian metric ḡ
on M̄ and a (1, 1)-tensor field φ such that

(1) η(X) = g(X, ξ), dη(X,Y ) = g(X,φY ), φ2X = −X + η(X)ξ,

where X̄ and Ȳ are vector fields on M̄ . From (1) it follows that

(2) φξ = 0, η ◦ φ = 0, g(φX̄, φȲ ) = ḡ(X̄, Ȳ )− η(X̄)η(Ȳ ).
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A Riemannian manifold M̄ equipped with structure tensors (η, ḡ, φ, ξ) satisfying
(1) is said to be a contact metric manifold and is denoted by M̄ = (M̄ ; η, ḡ, φ, ξ).
Given a contact metric manifold M̄ , we define the structural operator h by
h = 1

2£ξφ, where £ denotes Lie differentiation. Then we may observe that h
is symmetric and satisfies

hξ = 0 and hφ = −φh,(3)

∇̄X̄ξ = −φX̄ − φhX̄,(4)

where ∇̄ is the Levi-Civita connection. From (3) and (4) we see that each
trajectory of ξ is a geodesic. We denote by R̄ the Riemannian curvature tensor
defined by

R̄(X̄, Ȳ )Z̄ = ∇̄X̄(∇̄Ȳ Z̄)− ∇̄Ȳ (∇̄X̄ Z̄)− ∇̄[X̄,Ȳ ]Z̄

for all vector fields X̄, Ȳ and Z̄. Along a trajectory of ξ, the Jacobi operator
ℓ = R̄(·, ξ)ξ is a symmetric (1, 1)-tensor field. We call it the characteristic

Jacobi operator. A contact metric manifold for which ξ is Killing is called a
K-contact manifold. For a contact Riemannian manifold M one may define
naturally an almost complex structure J on M̄ × R:

J(X̄, f
d

dt
) = (ϕX̄ − fξ, η(X̄)

d

dt
),

where X̄ is a vector field tangent to M̄ , t the coordinate on R and f a function
on M̄ × R. If the almost complex structure J is integrable, M̄ is said to be
normal or Sasakian. It is known that a contact metric manifold M̄ is normal
if and only if M̄ satisfies

[ϕ, ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold is also charac-
terized by the condition (∇̄X̄ϕ)Ȳ = ḡ(X̄, Ȳ )ξ − η(Ȳ )X̄ and this is equivalent
to

(5) R̄(X̄, Ȳ )ξ = η(Ȳ )X̄ − η(X̄)Ȳ

for all vector fields X̄ and Ȳ .

Proposition 1. For a Sasakian manifold, the characteristic Jacobi operator ℓ
is pseudo-parallel with L = 1.

Proof. Let M̄ = (M̄ ; η, ḡ, φ, ξ) be a Sasakian manifold. Then, from (5) we get

(6) ℓX̄ = X̄ − η(X̄)ξ

for any vector field X̄ on M̄ . Using (6) we compute

(R̄(X̄, Ȳ ) · ℓ)Z̄

= R̄(X̄, Ȳ )ℓZ̄ − ℓ(R̄(X̄, Ȳ )Z̄)

= η(X̄)ḡ(Ȳ , Z̄)ξ − η(Ȳ )ḡ(X̄, Z̄)ξ + η(X̄)η(Z̄)Ȳ − η(Ȳ )η(Z̄)X̄,

(7)
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L((X̄ ∧ Ȳ ) · ℓ)Z̄

= L{(X̄ ∧ Ȳ )ℓZ̄ − ℓ((X̄ ∧ Ȳ )Z̄)}

= L{ḡ(Ȳ , ℓZ̄)X̄ − ḡ(X̄, ℓZ̄)Ȳ − ḡ(Ȳ , Z̄)ℓX̄ + ḡ(X̄, Z̄)ℓȲ }

= L{η(X̄)ḡ(Ȳ , Z̄)ξ − η(Ȳ )ḡ(X̄, Z̄)ξ + η(X̄)η(Z̄)Ȳ − η(Ȳ )η(Z̄)X̄}.

(8)

Then from (7) and (8), we can see that ℓ is pseudo-parallel and L = 1. �

3. The contact metric structure of the unit tangent sphere bundle

The basic facts and fundamental formulae about tangent bundles are well-
known (cf. [6], [9], [14]). We only briefly review some notations and definitions.
Let M = (M, g) be an n-dimensional Riemannian manifold and let TM denote
its tangent bundle with the projection π : TM → M, π(p, u) = p. For a
vector field X on M , its vertical lift Xv on TM is the vector field defined by
Xvω = ω(X) ◦ π, where ω is a 1-form on M . For the Levi Civita connection
∇ on M , the horizontal lift Xh of X is defined by Xhω = ∇Xω. The tangent
bundle TM can be endowed in a natural way with a Riemannian metric g̃, the
so-called Sasaki metric, depending only on the Riemannian metric g on M . It
is determined by

g̃(Xh, Y h) = g̃(Xv, Y v) = g(X,Y ) ◦ π, g̃(Xh, Y v) = 0

for all vector fields X and Y on M . Also, TM admits an almost complex
structure tensor J defined by JXh = Xv and JXv = −Xh. Then g̃ is a
Hermitian metric for the almost complex structure J .

The unit tangent sphere bundle π̄ : T1M → M is a hypersurface of TM
given by gp(u, u) = 1. Note that π̄ = π ◦ i, where i is the immersion of T1M
into TM . A unit normal vector field N = uv to T1M is given by the vertical
lift of u for (p, u). The horizontal lift of a vector is tangent to T1M , but the
vertical lift of a vector is not tangent to T1M in general. So, we define the
tangential lift of X to (p, u) ∈ T1M by

Xt
(p,u) = (X − g(X,u)u)v.

Clearly, the tangent space T(p,u)T1M is spanned by vectors of the form Xh and

Xt, where X ∈ TpM .

We now define the standard contact metric structure of the unit tangent
sphere bundle T1M over a Riemannian manifold (M, g). The metric g′ on
T1M is induced from the Sasaki metric g̃ on TM . Using the almost complex
structure J on TM , we define a unit vector field ξ′, a 1-form η′ and a (1,1)-
tensor field φ′ on T1M by

ξ′ = −JN, φ′ = J − η′ ⊗N.

Since g′(X̄, φ′Ȳ ) = 2dη′(X̄, Ȳ ), (η′, g′, φ′, ξ′) is not a contact metric structure.
If we rescale this structure by

ξ = 2ξ′, η =
1

2
η′, φ = φ′, ḡ =

1

4
g′,
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we get the standard contact metric structure (η, ḡ, φ, ξ). The tensors ξ and φ
are explicitly given by

(9) ξ = 2uh, φXt = −Xh +
1

2
g(X,u)ξ, φXh = Xt,

where X and Y are vector fields on M .

From now on, we consider T1M = (T1M ; η, ḡ, φ, ξ) with the standard contact
metric structure. Then the Levi-Civita connection ∇̄ of T1M is described by

∇̄XtY t = −g(Y, u)Xt,

∇̄XtY h =
1

2
(R(u,X)Y )h,

∇̄XhY t = (∇XY )t +
1

2
(R(u, Y )X)h,

∇̄XhY h = (∇XY )h −
1

2
(R(X,Y )u)t

(10)

for all vector fields X and Y on M .
Also the Riemann curvature tensor R̄ of T1M is given by

R̄(Xt, Y t)Zt = −(g(X,Z)− g(X,u)g(Z, u))Y t

+ (g(Y, Z)− g(Y, u)g(Z, u))Xt,

R̄(Xt, Y t)Zh =
{
R(X − g(X,u)u, Y − g(Y, u)u)Z

}h

+
1

4

{
[R(u,X), R(u, Y )]Z

}h
,

R̄(Xh, Y t)Zt = −
1

2

{
R(Y − g(Y, u)u, Z − g(Z, u)u)X}h

−
1

4
{R(u, Y )R(u, Z)X

}h
,

R̄(Xh, Y t)Zh =
1

2

{
R(X,Z)(Y − g(Y, u)u)}t −

1

4

{
R(X,R(u, Y )Z)u

}t

+
1

2

{
(∇XR)(u, Y )Z

}h
,

R̄(Xh, Y h)Zt =
{
R(X,Y )(Z − g(Z, u)u)

}t

+
1

4

{
R(Y,R(u, Z)X)u−R(X,R(u, Z)Y )u

}t

+
1

2

{
(∇XR)(u, Z)Y − (∇Y R)(u, Z)X

}h
,

R̄(Xh, Y h)Zh = (R(X,Y )Z)h +
1

2

{
R(u,R(X,Y )u)Z

}h

−
1

4

{
R(u,R(Y, Z)u)X −R(u,R(X,Z)u)Y

}h

+
1

2

{
(∇ZR)(X,Y )u

}t

(11)
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for all vector fields X , Y and Z on M . Using the formulae (11), we get

ℓXt = (R2
uX)t + 2(R′

uX)h,

ℓXh = 4(RuX)h − 3(R2
uX)h + 2(R′

uX)t,
(12)

where Ru = R(·, u)u, R′
u = (∇uR)(·, u)u and R2

u = R(R(·, u)u, u)u. We can
refer to [2, 3, 4] for the formulas (10) ∼ (12). From (12), we have the following
proposition.

Proposition 2. The characteristic Jacobi operator ℓ of T1M vanishes if and

only if M is locally flat.

Proof. Suppose that the characteristic Jacobi operator ℓ vanishes. Then we
get from (12) R′

uX = 0 and R2
uX = 0. The former implies that (M,G) is a

locally symmetric space ([8], [13]) and the latter does that the eigenvalues of
Ru are constant and equal to 0, i.e., (M,G) is a globally Osserman space (i.e.,
the eigenvalues of Ru do not depend on the point p and not on the choice of
unit vector u at p). However, a locally symmetric globally Osserman space is
locally flat or locally isometric to a rank one symmetric space ([7]). Therefore,
we conclude that M is a space of constant curvature 0. �

4. Proof of Main Theorem

Suppose that the characteristic Jacobi operator ℓ of T1M is pseudo-parallel
by a function L on T1M . Then T1M satisfies

R̄(X̄, Ȳ )ℓZ̄ − ℓ(R̄(X̄, Ȳ )Z̄)

= L{ḡ(Ȳ , ℓZ̄)X̄ − ḡ(X̄, ℓZ̄)Ȳ − ḡ(Ȳ , Z̄)ℓX̄ + ḡ(X̄, Z̄)ℓȲ }.
(13)

We put Ȳ = ξ in (13). Then we have

(14) R̄(X̄, ξ)ℓZ̄ − ℓ(R̄(X̄, ξ)Z̄) = L{−ḡ(X̄, ℓZ̄)ξ − η(Z̄)ℓX̄}.

Setting X̄ = Xt, Z̄ = Zt in (14), and applying the Riemmanian metric ḡ on
T1M for Y h on both sides, then we have the following equation:

1

2
g(R(X,R2

uZ)u, Y ) +
1

2
g(X,u)g(R3

uZ, Y ) +
1

4
g(R(X,u)R3

uZ, Y )

− g((∇uR)(u,X)R′

uZ, Y ) = −
1

4
Lg(X,R2

uZ)g(Y, u).

(15)

We put Y = u in (15). Then we have

g(−
1

4
R4

uX −R′

u

2
X,Z) = −

1

4
Lg(R2

uX,Z)

for any vector fields X and Z on M , that is, it holds

(16) R4
uX + 4R′

u

2
X = LR2

uX.

Since Ru is symmetric operator, if L ≤ 0, from (16) we have R′
u = 0 and

Ru = 0. Therefore, using the similar arguments in the proof of Proposition 2
we see that M is locally flat. This completes the proof of (i).
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Next, in order to prove the second part of Main Theorem we prepare the
following lemma.

Lemma 3. Let (M, g) be a locally symmetric space. Then the characteristic

Jacobi operator ℓ of T1M is pseudo-parallel by a function L on T1M if and

only if M is of constant curvature 0 or 1.

Proof. If we set X̄ = Xh, Z̄ = Zh in (14), and apply the Riemmanian metric
ḡ on T1M for Y h on both sides, then we have the following equation:

4g(R(X,u)RuZ, Y ) + 2g(R(u,RuX)RuZ, Y )− g(R(R2
uZ, u)X,Y )

− g(R(X,RuZ)u,RuY )− 3g(R(X,u)R2
uZ, Y )−

3

2
g(R(u,RuX)R2

uZ, Y )

+
3

4
g(R(R3

uZ, u)X,Y )−
3

4
g(R(R2

uZ,X)u,RuY ) + g((∇XR)(u,R′

uZ)u, Y )

− g((∇uR)(u,R′

uZ)X,Y )− 4g(R(X,u)Z,RuY ) + 3g(R(X,u)Z,R2
uY )

− 2g(R(u,RuX)Z,RuY ) +
3

2
g(R(u,RuX)Z,R2

uY ) + g(R(RuZ, u)X,RuY )

−
3

4
g(R(RuZ, u)X,R2

uY ) + g(R(X,Z)u,R2
uY )−

3

4
g(R(X,Z)u,R3

uY )

− g((∇ZR)(X,u)u,R′

uY )

=
1

4
L{−4g(X,RuZ)g(Y, u) + 3g(X,R2

uZ)g(Y, u)− 4g(RuX,Y )g(Z, u)

+ 3g(R2
uX,Y )g(Z, u)}.

(17)

Putting Y = u in (17), we have

(18) −
9

4
R4

uX + 6R3
uX − 4R2

uX −R′

u

2
X =

1

4
L(−4RuX + 3R2

uX).

We suppose that M is locally symmetric. Then from (16) and (18), we obtain

(19) R4
uX = LR2

uX,

(20) −9R4
uX + 24R3

uX − 16R2
uX = L(−4RuX + 3R2

uX).

We assume that RuX = λX for a function λ on M . Then from (19) and (20),
we have

(21) λ4 = Lλ2,

(22) 9λ4 − 24λ3 + 16λ2 − 4Lλ+ 3Lλ2 = 0.

From (21), we have λ = 0 or L = λ2. If L = λ2 and λ 6= 0, from (22), we have

(3λ− 4)(λ− 1) = 0.

Hence, λ = 0, 1 or 4
3 , and then (M, g) is a globally Osserman space. But, it is

also locally symmetric, and then it is locally isometric to a rank one symmetric
space. However, we can easily check that T1M of a space of constant curvature
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4
3 does not satisfy pseudo-parallelism of ℓ. Therefore, we conclude that (M, g)
is of constant curvature 0 or 1. By Propositions 1 and 2, the converse is easily
proved. �

Now we assume that L is constant. Then, from (16) and (18), we have

(23) 2R4
uX − 6R3

uX + 4R2
uX = L(RuX −R2

uX).

If we put RuX = λX , we get

(24) λ(λ− 1)(2λ2 − 4λ+ L) = 0.

Here, we use Nikolayevsky’s results ([10, 11, 12]) on the Osserman conjecture.
Then we find that (Mn, g) is locally isometric to a rank one symmetric space,
when n 6= 16. Thus, by Lemma 3 we conclude that (M, g) is of constant
curvature 0 or 1, when n 6= 16. Conversely, by Propositions 1 and 2, we see
that for the unit tangent sphere bundle over a space of constant curvature c = 0
or c = 1, the characteristic Jacobi operator ℓ is pseudo-parallel with L = 0 or
L = 1, respectively. This completes the proof of Main Theorem.

Corollary 4. If ℓ of T1M is semi-parallel, that is, L = 0, then M is locally

flat.
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