• Title/Summary/Keyword: Redundancy

Search Result 1,485, Processing Time 0.031 seconds

An efficient metaheuristic for multi-level reliability optimization problem in electronic systems of the ship

  • Jang, Kil-Woong;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.1004-1009
    • /
    • 2014
  • The redundancy allocation problem has usually considered only the component redundancy at the lowest-level for the enhancement of system reliability. A system can be functionally decomposed into system, module, and component levels. Modular redundancy can be more effective than component redundancy at the lowest-level because in modular systems, duplicating a module composed of several components can be easier, and requires less time and skill. We consider a multi-level redundancy allocation problem in which all cases of redundancy for system, module, and component levels are considered. A tabu search of memory-based mechanisms that balances intensification with diversification via the short-term and long-term memory is proposed for its solution. To the best of our knowledge, this is the first attempt to use a tabu search for this problem. Our tabu search algorithm is compared with the previous genetic algorithm for the problem on the new composed test problems as well as the benchmark problems from the literature. Computational results show that the proposed method outstandingly outperforms the genetic algorithm for almost all test problems.

Parallel I/O DRAM BIST for Easy Redundancy Cell Programming (Redundancy Cell Programming이 용이한 병렬 I/O DRAM BIST)

  • 유재희;하창우
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1022-1032
    • /
    • 2002
  • A multibit DRAM BIST methodology reducing redundancy programming overhead has been proposed. It is capable of counting and locating faulty bits simultaneously with the test. If DRAM cells are composed of n blocks generally, the proposed BIST can detect the state of no error, the location of faulty bit block if there is one error and the existence of errors in more than two blocks, which are n + 2 states totally, with only n comparators and an 3 state encoder. Based on the proposed BIST methodology, the testing scheme which can detect the number and locations of faulty bits with the errors in two or more blocks, can be easily implemented. Based on performance evaluation, the test and redundancy programming time of 64MEG DRAM with 8 blocks is reduced by 1/750 times with 0.115% circuit overhead.

Availability Analysis of 2N Redundancy System Using Stochastic Models (안정적인 서비스를 위한 2N 이중화 모델의 가용도 분석)

  • Kim, Dong Hyun;Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2634-2639
    • /
    • 2014
  • The idea of redundancy is used in order to improve the availability of networks and systems and there are various methods for implementing redundancy. To perform the availability analysis various stochastic models have been used. In this paper, 2N redundancy with one active service unit and one standby service unit is considered. To evaluate the expected availability, we model 2N redundancy using Stochastic Reward Nets. This model can be solved using the SPNP package.

신뢰성 및 정비성 요구조건 만족을 위한 직렬시스템의 중복 구조 설계

  • Kim, Jong-Un;Park, Jun-Seo;Yu, Won-Hui
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.11a
    • /
    • pp.105-109
    • /
    • 2006
  • MTTR and MTBSF are two representative quantitative maintainability and reliability requirements for railway systems. we deal with the redundancy allocation problem to satisfy the two requirements. The redundancy increases MTBSF and changes MTTR. Parallel redundancy and the exponential lifetime distribution of components are considered for the series systems. Mathematical model and example are presented for the redundancy optimization problem of minimizing the cost subjecting to MTTR and MTBSF requirements.

  • PDF

Reliability-based Redundancy Evaluation Method for Steel Plate Girder Bridges (신뢰도 기반 플레이트 거더교의 여유도 평가 기법)

  • Joe, Woom Do Ji;Park, Yong Myung;Jin, Seung Hoon;Hwang, Min Oh;Chung, Heung Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.493-503
    • /
    • 2009
  • Bridge redundancy is defined as the capability of a bridge to sustain loads after one of its main members incurs damage. It is affected by many parameters, including the number of girders, span length, girder height, internal supports, and secondary members. The present AASHTO and Korean Bridge design codes, however, define bridge redundancy only as the number of girders, and neither the evaluation method nor the required level of redundancy is given. This study presented a redundancy evaluation method for plate girder bridges with severe fatigue damage based on the reliability method,by considering the essential parameters. A required level of redundancy was also proposed as a target system reliability index from the load capacity analysis and reliability analysis of the basis bridge designed by LRFD. Finally, the level of redundancy of simple and continuous plate girder bridges with a variable number of girders designed by ASD was evaluated and presented.

Reliability Analysis of a System with Redundancy Management Based on Monte-Carlo Probability Model (다중구조관리자 특성이 반영된 확률모델 기반의 몬테카를로 신뢰도 해석 기법 연구)

  • Kim, Sung-Su;Park, Sang-Hyuk;Kim, Sung-Hwan;Choi, Kee-Young;Park, Choon-Bae;Ha, Cheol-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1132-1137
    • /
    • 2011
  • Critical systems with high reliability feature fault tolerant redundancy. Conventional analytical reliability analysis methods that use the Reliability Block Diagram do not adequately reflect characteristics of the redundancy management system and are not suitable for this applications. This paper uses Monte-Carlo method to calculate the reliability of complicated redundant systems. The method was first validated for cases with analytical solutions. Then, the tool was successfully applied to analyze reliability of the flight control systems with a voter as redundancy management system.

Local minimization behavior of weighted kinematically decoupled joint space decomposition for redundant manipulators

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.123-128
    • /
    • 1996
  • Kinematically redundant manipulators have been studied because of its usefulness of kinematic redundancy. It is natural that the kinematic redundancy induces a kind of control redundancy. By using the weighted kinematically decoupled joint space decomposition, we unify the control redundancy and the kinematic redundancy parameterized by the joint space weighting matrix. Concentrating to the particular component of each decomposition, we can describe the local minimization behavior of the control weighted quadratic by each weighted decomposition. The result extends the conventional results on general setting, and should be of interest in understanding the motion behavior of kinematically redundant manipulators.

  • PDF

Development of Fuzzy Hybrid Redundancy for Sensor Fault-Tolerant of X-By-Wire System (X-By-Wire 시스템의 센서 결함 허용을 위한 Fuzzy Hybrid Redundancy 개발)

  • Kim, Man-Ho;Son, Byeong-Jeom;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The dependence of numerous systems on electronic devices is causing rapidly increasing concern over fault tolerance because of safety issues of safety critical system. As an example, a vehicle with electronics-controlled system such as x-by-wire systems, which are replacing rigid mechanical components with dynamically configurable electronic elements, should be fault¬tolerant because a devastating failure could arise without warning. Fault-tolerant systems have been studied in detail, mainly in the field of aeronautics. As an alternative to solve these problems, this paper presents the fuzzy hybrid redundancy system that can remove most erroneous faults with fuzzy fault detection algorithm. In addition, several numerical simulation results are given where the fuzzy hybrid redundancy outperforms with general voting method.

Optimum redundancy design for maximum system reliability: A genetic algorithm approach (최대 시스템 신뢰도를 위한 최적 중복 설계: 유전알고리즘에 의한 접근)

  • Kim Jae Yun;Shin Kyoung Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.125-139
    • /
    • 2004
  • Generally, parallel redundancy is used to improve reliability in many systems. However, redundancy increases system cost, weight, volume, power, etc. Due to limited availability of these resources, the system designer has to maximize reliability subject to various constraints or minimize resources while satisfying the minimum requirement of system reliability. This paper presents GAs (Genetic Algorithms) to solve redundancy allocation in series-parallel systems. To apply the GAs to this problem, we propose a genetic representation, the method for initial population construction, evaluation and genetic operators. Especially, to improve the performance of GAs, we develop heuristic operators (heuristic crossover, heuristic mutation) using the reliability-resource information of the chromosome. Experiments are carried out to evaluate the performance of the proposed algorithm. The performance comparison between the proposed algorithm and a pervious method shows that our approach is more efficient.

An Optimal Initial Configuration of a Humanoid Robot (인간형 로봇의 최적 초기 자세)

  • Sung, Young-Whee;Cho, Dong-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.167-173
    • /
    • 2007
  • This paper describes a redundancy resolution based method for determining an optimal initial configuration of a humanoid robot for holding an object. There are three important aspects for a humanoid robot to be able to hold an object. Those three aspects are the reachability that guarantees the robot to reach the object, the stability that guarantees the robot to remain stable while moving or holding the object, and the manipulability that makes the robot manipulate the object dexterously. In this paper, a humanoid robot with 20 degrees of freedom is considered. The humanoid robot is kinematically redundant and has infinite number of solutions for the initial configuration problem. The complex three-dimensional redundancy resolution problem is divided into two simple two-dimensional redundancy resolution problems by incorporating the symmetry of the problem, robot's moving capability, and the geometrical characteristics of the given robot. An optimal solution with respect to the reachability, the stability, and the manipulability is obtained by solving these two redundancy resolution problems.