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Abstracts Kinematically redundant manipulators have been studied because of its usefulness of kinematic re-
dundancy. It is natural that the kinematic redundancy induces a kind of control redundancy. By using the
weighted kinematically decoupled joint space decomposition, we unify the control redundancy and the kinematic
redundancy parametrized by the joint space weighting matrix. Concentrating to the particular component of
each decomposition, we can describe the local minimization behavior of the control weighted quadratic by each
weighted decomposition. The result extends the conventional results on general setting, and should be of interest
in understanding the motion behavior of kinematically redundant manipulators.

1. Introduction

Since the initial stage of studying redundant manipu-
lators, the control, or torque, minimization capability
has been under intensive researches, some of which are
found in [2, 7, 5, 4, 1]. To proceed the discussion, we as-
sume the followings. Given a redundant manipulators
whose degrees of freedom is n and task space dimen-
sion is m(< m), the task motion p = (p1,---,pm)7 is
mapped from the joint motion g = (g1, - -, ¢.)T by the
set of forward kinematics

p = k(q) (1)
p = J(q)q, J(q)=% (2)
p = J@a+JI(gd)aq, (3)

where the m x n-matrix J(q) is called the Jacobian
matrix. Assume that by denoting the control by n-
vector T, the dynamics in the joint space is formulated
by

T =M(q)4 + h(q,q), (4)

where M(q) € R"*" is the inertia matrix, and h(q, q)
denotes collectively all the nonlinear dynamics except
the inertial torque. In the sequel, all the arguments are
suppressed since no ambiguity would arise.

The primary objective of a manipulator is to track a
desired task trajectory p,(t) by manipulating the joint
torque T, referred to as the control. When the dynamic
effect is negligible, which is true especially for the ma-
nipulator with large transmission reduction, which is
operating slowly, the manipulator can be approximated
by a simple linear system,

g=u

by suitable definition of u. Taking into account the
output equation given by (1), the control problem re-
duces to the inverse kinematic system. It is well known
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that a possible joint velocity input w which reproduces
the desired task trajectory can be obtained by

qd=q,+q,=J" (py+ Kep) + (I - IV e (5)

where J'V'* € R7X™ denotes the weighted pseudoin-
verse of the Jacobian J, and @ € R™ is arbitrary veloc-
ity. Note that the particular velocity g, is the unique
joint velocity to reproduce the task velocity p, while
minimizing the weighted velocity quadratic quq, and
the homogeneous velocity ¢, can be used to impose self-
motion. It should be noted that the homogeneous veloc-
ity, if any, increses the joint velocity quadratic g7 W¢
locally, but it can enforce the manipulator to move to-
wards a desired configuration, which may result in a
globally smaller velocity trajectory.

Discarding the assumptions leading to the linear sys-
tem, the inverse dynamic control problem follows which
solves T such that the manipulator can reproduce p,.
To find a control 7 minimizing 77 W subject to (3) is
the problem definition for the local torque minimization
that is

To find a inverse dynamic torque T at the
state (g7, ¢")7
which minimizes

rTwr
subject to
Preg =Ja+Jq.

Note that the reference acceleration p,.; is used in-
stead of p, or P to take into account the control due
to possible task motion error. One of the conventional
solutions follows the following calculations. Using the
Lagrange multiplier technique the problem is converted
to an unconstrained problem which finds a minimal so-
lution of

L=1"Wr+AT(Jg+Jg—p,. ).



The minimal control 7 is then obtained by solving

oL

5T = 2T W -ATIM™T =0

from which

W—IM—IJT(JM—1W41M~1JT)—1
(Preg —Jq+IM'h).

T

(6)

From the above discussion, we can see that there
exist a unique control quadratic which is minimized lo-
cally according to the joint space weight matrix W,
that is which weighted pseudouinverse is used. In this
article, we study this aspect. The kinematic redun-
dancy appearing in (5) is generalized to inverse dynamic
case using the notion of control redundancy. Then the
local minimization behavior of control quadratic im-
posed by the weighted kinematically decoupled joint
space decomposition [6] is described.

2. Parametrization and Representation of

Redundancy

1. Control redundancy

By substituting ¢ from (4) to (3), a kind of direct map
from the control input to the task motion is obtained
of the form

JM 't =p-Jg+JIM 'h. (7)
This equation can be used to specify the portion of
inverse dynamic torque, referred to as the particular
torque T, € R™, to obtain the following closed-loop
dynamics in the task space

I") = In)ref' (8)
By generating the particular torque such that
JIM 'ty =p..;—Jg+IM 'h 9)

the above task closed-loop dynamics is guaranteed. To
see the effect of the kinematic redundancy on the in-
verse dynamic control, observe that the set of con-
trols whose particular torques satisfy (9) forms a 7-
dimensional linear affine space, where r = n — m is
called the degrees of redundancy. It is a direct conse-
quence of the fact that the control having 7, as the
particular torque component is uniquely decomposed
by
T=Tp+Th

where 7, € R”, called the homogeneous torque, is cho-
sen among the null space of JM ™!, whose dimension
is 7. Then 7, forms a r-dimenisonal vector subspace.
The control redundancy describes the effect of the kine-
matic redundancy on the inverse dynamic control as
described above.

It is definitely related to the conventional redun-
dancy formulation in the velocity level, referred to as
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the kinematic redundancy. By integrating the task

closed-loop dynamics (8), the actual task velocity will
t

be p..,(t) = / Dres + P(to). Then the joint velocity

to
should have the particular velocity satisfying

Jql; :pref' (10)
Similarly, the set of ¢ having g, as the particular ve-
locity forms a r-dimensional linear affine space. By
decomposing ¢ by

q:qp+qh

where ¢, forms a r-dimenisonal vector subspace corre-
sponding to the null space of J.

It should be noted that the ¢, and 7 is not inde-
pendent, as ¢, and T, are related as above. To express
the kinematic and control redundancy, a conventional
approach is to decompose ¢ by

. W4+ . w :
q= J +p'ref + (I -J +J)qh (11)
where JWT € R7%™ is the weighted pseudoinverse of

J. Tt is easy to see that the filter (I — JW*J) passes
any homogeneous velocity without any modification, or

q, = - JW+J)"Ih
for all g, € N(J).

2. Kinematics decomposition

It was shown [6] that the above decomposition is equiv-
alent to

g = W [RW“%(JW‘%RW‘é)_I
1 P
Ny 4 (Z, 3N, ) ](n , )7(1”
w
where
I,y =dwh oz =zwt (13

and Rw_% € R™*™ and NW
cally obtained by taking the eigenvalue decomposition

€ R™*" are numeri-

of J;_%JW_%, ie.
JT g . N -1 0
w-iYw-t T [ w1 W—%] i 0
T
[ Ry Nyi | (14)

where va_% is the diagonal matrix having m nonzero
eigenvalues. The r-dimensional vector 'r‘LW% is called
the (weighted) null velocity defined by

n=2ZWjq. (15)



The null velocity hl, 3 € R is a kind of minimal
parametrization of q, since ZW passes only the ho-
mogeneous velocity because

ZWq = ZWIVp. .+ T =TV T)g,)
1 .
= ZWW 3T ip,,
L + 1
+ZWW 22“,_%ZW—§WZQh

_ +
- Z‘V_%J‘.V—-%—pref

+ 1,
t2-3 2 LW

1
2

Z _Wig, = ZWq,.

wW~72

Similarly, by viewing the task velocity p as a minimal
parametrization of ¢, deined by (2), it forms a new
coordinate together with ’r'lw% defined by

P _ J .
(oms )= lawle 0o
w2
whose inverse is given by (12). Note that the coordinate
transformation is not singular if J has full row rank m,
i.e. kinematically nonsingular.
3. Dynamics decomposition

Since time-derivative of (12) reduces to

L -1
9 = W—%(JW—%RW“%)

‘Nw"%(ZW*%NW'—%)~I]
b-Ja
( iy~ (ZW + ZW)q ) » - am)

the joint dynamics (4) can be expressed by [6]

wt [R

o

T:W“[R

-1
(Jy-1 By oy )

w- %
-1
INW“JZ'(ZW‘%NW'%) ]
p~Jq
( iy~ (ZW + ZW)g ) +h (18)

which is called the acceleration decomposed dynamics.
By further decomposing the nonlinear dynamics h, we
get

V% -1
T = W ~[RW_1(J”_%R“,%)
~1
]NW_%(Z“,_%NHJ) ] (19)

p—Jag+JM 'h
\ .y —(ZW +ZW)g+ ZWM ™' h

which is called the weighted kinematically decomposed
dynamics. The first element of the right hand side
vector is called the task dynamic acceleration, and the
lower one is called the null dynamic acceleration.

Remark 2..1 Since (17) is a proper inverse of (3), (18)
should be regarded as an improved version of conven-
tional acceleration decomposed dynamics

r=M (J”’+(p _Jg) (I~ JW+J)ijh> +h. (20)

Also, (19) is also a generalized and improved version of
conventional inverse of (7) since the latter formulated

by

r=(JMY*(p-TJg+IM 'h)+(I-(JM)" TM)r},

(21)
reduces to the case of the M?-weighted kinematically
decomposed dynamics. Note that two forms given in
(20) and (21) are not equivalent to each other, whereas
the proposed formulations of (18) and (19) are equiva-
lent.

3. Minimization Behaviors of Decomposed
Inverse Dynamics

In this and subsequent sections, we will study on the
behavioral characteristics which is imposed by a certain
weight matrix. We proceed by introducing a concept of
decoupling with respect to a weight matrix.

DEFINITION 3..1 A quaedratic form of joint wvelocity
given by
g'Kq, K=K%'>0

is said to be decoupled with respect to W if there ex-
ist symmetric positive definite weight matrices W, K,
and K, of appropriate dimensions where the quadratic
form can be transformed to

QKq=p Kpp+ng  Knn (22)

with respect to the W -weighted kinematically decoupled
joint space.

The term ‘decoupling’ is obvious since in the new coor-
dinate the quadratic does not include the coupled term
betwwen p and nw%. The matrix W is called the de-
coupling matrix of the velocity quadratic. The decou-
pling matrix is not trivial. For example, let us trans-
form the quadratic to the kinematically decoupled coor-
dinate using I as the weight. Then (12} being plugged
in, there follows

q'Kg = p"(JR"R'KR(JR)'p
+ nT(ZN)Y"TNTKN(ZN) 'n
+ 2pT"(JR)"TRTKN(ZN) 'n,
which is not decoupled with respect to I unless K =
I. The following lemma establishes the obvious fact

that a W-weighted velocity quadratic is decoupled with
respect to the weight W.

LEMMA 3..1 The quadratic form ¢' Wq is decoupled
with respect to the same weight matric W. Moreover,

dWag=pl(IW I p+ nf‘l (Zwz")'n .

(23)
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Proof. The proof is not difficult since the direct
substitution will verify the lemma. [ |

The concept of decoupling can be extended to the
inverse dynamic control.

DEerFINITION 3..2 A K -weighted control quadratic
given by

TKr, K=K¥>0
is said to be decoupled with respect to W if there exist a
symmetric positive-definite weight matric W by which
the quadratic form can be transformed to one which does
not contain a coupling term between the task dynamic
acceleration and the null dynamic acceleration.

The following lemma will answer the useful fact about
the decoupling weight of a weighted control quadratic.

LEMMA 3..2 The quadratic form 7T Kt is decoupled
with respect to the weight matric W = MK M. More-
over,

TKr

P-Jg+IM BT (IWw 1 gT-!
(p—Jqg+JIM'h) (24)
+(ity — (ZW + ZW)qg+ ZWM 'h)T(Zzw zT)™!

i,y —(ZW + ZW)qg+ ZWM 'h)

w
The proof is direct and easy.

1. Local minimization of velocity quadratic

Since a quadratic form ¢T W q is decoupled between P
and 'r'LW% , it is extremely useful to solve the following
equality-constrained local minimization problem of the
weighted quadratic

To find a ¢ which minimizes
Q" Wi(g)q
subject to (2).

The problem can be reduced to an unconstrained
quadratic minimization problem by parametrizing the
solution using (12). The choice of the same weight
matrix W in weighted decomposition is guided by
Lemma 3..1. Then the problem is recast as

To find a sz% € R” which minimizes
-1
awg = pf (JW‘IJT) p
)

+ al, (zwz") - Ry

Then the solution is easily obtained by requiring that

9¢"Wq

ont ,
w2

0. (25)

Evaluating the partial derivatives, we get

(ZWZT)—lh L =0.
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Since the coeflient matrix is nonsingular, the solution
is hw% = 0. The optimal joint velocity is then given
by

-1

_1 .
= WER 4 (Jw—%RW‘%) p

[ . W+ .
= W 2JW_%p = J"7p, (26)
which coincides with the well-known fact that the par-
ticular velocity by the W-weighted pseudoinverse min-
imizes the W-weighted velocity quadratic locally. The
minimum quadratic is evaluated to be

min ¢TWq=pl(IJwW=1)"'p. (27)

Remark 3..1 It is worth noting that the simple deriva-
tion of the result is owed to the weighted kinematically
decoupled joint wvelocity decomposition with respect to
the decoupling weight. For example, a different weight
can be used to decompose the joint velocity instead of
the decoupling matriz. For complexity comparison, as-
sume that I is used as the weight matriz. Then it is
easy to see that the mintmizing solution n is given by

n=—(ZNYNTWN)'NTWR(JR) 'p
which leads to the minimum quadratic value of

a"Wq
‘R(JR) !p.

Since the quadratic has a unique minimum, it should be
equal to (27). Hence, the joint solutions should be equal.
But the degrees of difficulty in two approaches are quite
different. Thus we can conclude that to minimize a
weighted quadratic the joint space decomposition using
the decoupling matriz as the weight is most suitable.

A class of weighted velocity quadratic includes var-
ious kinematic and dynamic related measures. Three
important quadratics are the joint velocity norm, the
kinetic energy, and the momentum norm, each of which
can be defined as the I, M, and M2—weighted veloc-
ity quadratic, respectively. The minimizing behavior of
each quadratic is important in view that they inevitably
affects the motion of a manipulator.

We can define three weighted kinematically decou-
pled joint space decompositions which decouples each
quadratic form. The first is the kinematically decou-
pled joint space decomposition which decouples the ve-
locity quadratic. The next is the M-weighted kine-
matically decoupled joint space decomposition which
decouples the kinetic energy. The third is the squared-
inertia weighted decomposition, with respect to which
the momentum quadratic is decoupled.

Example 3..1 (Velocity quadratic minimization) The
optimal velocity which minimizes g7 ¢ is

4=R(JR)'p. (28)

The associated minimum is

velocity quadratic
pI(IIT) P,

pT(JR) " TRTW(I - N(NTWN)"'NTw)



Example 3..2 (Kinetic energy minimization) The min-
imizing velocity of qgTMq

. Y -1
q=M"R 4 (‘IM—%RM‘%) p; (29)
with the minimum kinetic energy pT (JM~1JT)~1p.

Example 3..3 (Momentum quadratic —minimization)
The minimization of the momentum quadratic ¢ M?¢
leads to

g=M7TRy (Jy-Ry—)"'p. (30)

and the minimum momentum is p7 (JM 2JT)"1p.

2. Local minimization of control quadratic

In this section, the local minimizing solution of a
weighted control quadratic 77 K7 is found. This re-
sult is specialized to cases of I, M~ and M *-
weighted control quadratic. As a consequence, the re-
lation between local minimization of the weighted ve-
locity quadratic and control quadratic is revealed.

Let us formulate the general solution of the following
problem

To find a solution 7 which minimizes
TTK(q)T
subject to (7).

Remark 3..2 The equality constraint (7) is equivalent
to (3) under the joint dynamics (4).

Note that the quadratic is decoupled with respect to
W = MKM and the quadratic is transformed to
(24). Since the only variable that can be manipulated
is ﬁw%’ the problem is reduced to the unconstrained
minimization problem which finds ﬁw% minimizing the
transformed quadratic.

Then by solving

rTKr
onl .
wit

we obtain

oy = (ZW + ZW)q - ZMKh, (31)

where W = M KM. The solution can be considered
as the minimal null dynamic acceleration

0= 4 — (ZW + ZW)q + ZMKh. (32)

With this optimal solution, the minimizing control is
given by

T =

—1 -1
MW™:R, _, (JW—%RW“%)
(p-Jg+IM™h). (33)

Also, the minimal quadratic is
. T N
TKr = {p-Jg+IM'h} (W)
-{i)—Jq+JM‘lh}. (34)

Using the result, three speical cases of weighted
quadratic are analyzed, where K is I, M™!, and M 2.

Example 3..4 (Torque quadratic minimization) The op-
timal control which minimizes 777 is obtained by the
M?-weighted kinematically decomposed dynamics by
setting the null dynamic acceleration zero, i.e.

T = R1u~1 (JA]~1RA[—1)_1 (p - Jq +JM_1h) (35)

Example 3..5 (Inertia-inverse weighted torque
quadratic minimization) To minimize 7M™y,
by setting K = M™! and W = M the minimizing
control is

—1 .
r=MR _, (JM_%RW,%) (H—Jq+ M h).
(36)

Example 3..6 (Squared inertia-inverse weighted torque
quadratic Minimization) The torque given by

r=MR(JR)™ {;‘5 - JqJM—lh} (37)

locally minimizes 77 M 2.

Note that it is equal to the pseudoinverse solution of
JM ™1 of the following task space open-loop dynamics

JM 'r=p—-Jg+JM 'h. (38)

By observing that the weight matrix is M?, we can con-
clude that the squared inertia weighted kinematically
decoupled joint space decomposition has the property
of partial minimization of ¢* M*q and 77. Note that
the above solution is equal to the M ~*-weighted pseu-
doinverse solution of (38). In this case, we can conclude
that the inertia weighted kinematically decoupled joint
space decomposition impose the local behavior of par-
tial minimization of ¢ M and 77 M ~'7. By taking
the M~ %-weighted pseudoinverse of JM ™! for (38),
we can get the same solution. Hence, the kinemati-
cally decoupled joint space decomposition has the local
behavior partially minimizing g¥q and vTM2r,

3. Relation of local minimization behavior

Observing the solutions to local minimization of
velocity quadratic and control quadratic reveals
that the optimal velocity minimizing qg*W¢q and
7TM™'W M ™'t are particular component using the
JW* . In other words, they are particular components
of the inverse equation to (2) and (7) with respect to
W -weighted kinematically decoupled joint space de-
composition. Focusing on the three decompositions dis-
cussed in previous two sections, they are summarized
in Tables 1 and 2.
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Remark 3..3 It can be shown [5, 3] that the locally
minimizing solution of the weighted torque quadratic
TTM WM 7 corresponds to the globally minimiz-
ing solution of the weighted velocity quadratic quq
given by

ty T )
g Waqdt. (39)

to

It should be noted that the optimal solution to local
control quadratic is fundamentally different from one to
local or global velocity quadratic in the following sense.
In case of velocity minimization, the optimal solution
leads to zero null velocity during motion, since

ZWW IR _, (JW_%RW,%)_I p=0.

Unfortunately, the resulting null dynamics from the
minimal control is not trivial, but of the form

ity (ZW + ZW)qg+ ZWM 'h =0.
Decomposing ¢ yields

. . _1 -1
My —(ZWHZW)W™:N (ZW—%NW—%) e

. - 1 —1 .
=@W+ZWW IR (1, 4R y) b
- ZWM™'h

. In other words, the null motion is internally generated
by the above nontrivial dynamics.

4. Conclusions

In this article, we have described the minimization be-
havior according to which weighted pseudoinverse is
used to invert the kinematics based on the weighted
kinematically decoupled joint space decomposition.
Thanks to the minimal and decoupled expression of
the kinematic and control redundancy parametrized by
each weight matrix, the problems of local minimization

of velocity and control quadratic reduce to rather trivial
ones. The work of this article will be useful in designing
an inverse dynamic controller to locally minimizes a
certain control quadratic.
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Table 1: Velocity quadratic minimization

I | p=Jq | minimizing norm |
Jt q=R(JR) p 1 q’q
M+ - -1 T .T .
J 9=M 2RM'% (JM‘%RM—%) p qg Mq
JM2+ . _M_lR J R —1 . .TMQ.
q = M (T Rpy—1) P q q

Table 2: Joint Torq

ue Minimization

JM 'r=p—-Jg+JM 'h

! minimizing normT

IV = Mgt
J%:H = MJM+

Jiper = MM

1

T=MR, _, (JM'f

R
M

r=MR(JR)™ {p —Jg+ JM‘lh}

T = R}w—l (JA]—I R}w—l)f

TTM2r
%)*1 {p-Jda+amn} | +TMr
Hp-dq+amn} rTr

128



