• Title/Summary/Keyword: Reduction of system order

Search Result 1,889, Processing Time 0.033 seconds

Rotordynamic Analysis of a Turbomolecular Pump (터보분자펌프의 회전체 동해석)

  • Han, Jeong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.764-765
    • /
    • 2011
  • In this paper, rotordynamic analyses of the Campbell diagram, critical speeds, and harmonic responses for a TMP rotor system are performed. Since the finite element model of the TMP rotor system has a very large number of degrees of freedom because of its complex geometry, and dynamic analyses for investigating the critical speeds, stability, and harmonic response are repeated for various design parameters, model order reduction (MOR) is necessary to reduce the computational cost. The Krylov-based model order reduction via moment matching significantly speeds up the rotordynamic analyses for the TMP rotor system.

  • PDF

Designing a Coordinated Setup Cost Reduction Program of a Supply Chain

  • Lee, Chang-Hwan;Pae, Jae-H.
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.117-139
    • /
    • 2007
  • This paper contributes by incorporating works addressing supply chain coordination and investing in setup reduction program. Consider a two-echelon, EOQ-like inventory system consisting of a supplier and a buyer. We assume that both the supplier and the buyer can invest in setup cost reduction programs in order to benefit from small order sizes. However, the costs of investing in setup cost reduction programs are different for the two parties, leading to mismatches in individually optimal setup costs and order cycle times. We propose a supply chain coordination contract that makes use of quantity discount as an incentive transfer scheme for supply chain coordination.

Dynamic transient analysis of systems with material nonlinearity: a model order reduction approach

  • Casciati, F.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • Model Order Reduction (MOR) denotes the theory by which one tries to catch a model of order lower than that of the real model. This is conveniently pursued in view of the design of an efficient structural control scheme, just passive within this paper. When the nonlinear response of the reference structural system affects the nature of the reduced model, making it dependent on the visited subset of the input-output space, standard MOR techniques do not apply. The mathematical theory offers some specific alternatives, which however involve a degree of sophistication unjustified in the presence of a few localized nonlinearities. This paper suggests applying standard MOR to the linear parts of the structural system, the interface remaining the original unreduced nonlinear components. A case study focused on the effects of a helicopter land crash is used to exemplify the proposal.

Model Order Reduction Using Moment-Matching Method Based on Krylov Subspace and Its Application to FRF Calculation for Array-Type MEMS Resonators (Krylov 부공간에 근거한 모멘트일치법을 이용한 모델차수축소법 및 배열형 MEMS 공진기 주파수응답함수 계산에의 응용)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.436-441
    • /
    • 2008
  • One of important factors in designing array-type MEMS resonators is obtaining a desired frequency response function (FRF) within a specific range. In this paper Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented to calculate the FRF of array-type resonators. By matching moments at a frequency around a specific range of the array-type resonators, required FRFs can be efficiently calculated with significantly reduced systems regardless of their operating frequencies. In addition, because of the characteristics of moment-matching method, a minimal order of reduced system with a specified accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations.

  • PDF

Model reduction techniques for high-rise buildings and its reduced-order controller with an improved BT method

  • Chen, Chao-Jun;Teng, Jun;Li, Zuo-Hua;Wu, Qing-Gui;Lin, Bei-Chun
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • An AMD control system is usually built based on the original model of a target building. As a result, the fact leads a large calculation workload exists. Therefore, the orders of a structural model should be reduced appropriately. Among various model-reduction methods, a suitable reduced-order model is important to high-rise buildings. Meanwhile, a partial structural information is discarded directly in the model-reduction process, which leads to the accuracy reduction of its controller design. In this paper, an optimal technique is selected through comparing several common model-reduction methods. Then, considering the dynamic characteristics of a high-rise building, an improved balanced truncation (BT) method is proposed for establishing its reduced-order model. The abandoned structural information, including natural frequencies, damping ratios and modal information of the original model, is reconsidered. Based on the improved reduced-order model, a new reduced-order controller is designed by a regional pole-placement method. A high-rise building with an AMD system is regarded as an example, in which the energy distribution, the control effects and the control parameters are used as the indexes to analyze the performance of the improved reduced-order controller. To verify its effectiveness, the proposed methodology is also applied to a four-storey experimental frame. The results demonstrate that the new controller has a stable control performance and a relatively short calculation time, which provides good potential for structural vibration control of high-rise buildings.

The Effects of Total Variation (TV) Technique for Noise Reduction in Radio-Magnetic X-ray Image: Quantitative Study

  • Seo, Kanghyen;Kim, Seung Hun;Kang, Seong Hyeon;Park, Jongwoon;Lee, Chang Lae;Lee, Youngjin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.593-598
    • /
    • 2016
  • In order to reduce the amount of noise component in X-ray imaging system, various reduction techniques were frequently used in the field of diagnostic imaging. Although the previous techniques -such as median, Wiener filters and Anscombe noise reduction technique - were able to reduce the noise, the edge information was still damaged. In order to cope with this problem, total variation (TV) noise reduction technique has been developed and researched. The purpose of this study was to evaluate and compare the image quality using normalized noise power spectrum (NNPS) and contrast-to-noise ratio (CNR) through simulations and experiments with respect to the above-mentioned noise reduction techniques. As a result, not only lowest NNPS value but also highest CNR values were acquired using a TV noise reduction technique. In conclusion, the results demonstrated that TV noise reduction technique is proved as the most practical method to ensure accurate denoising in X-ray imaging system.

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

Model Reduction using Stochastical Balance Technique (확률론적 Balance 방법을 이용한 제어용 모델의 축소)

  • Lee, Dong-Hee;Kwon, Dong-Chul;Yeo, Un-Kyung;Park, Sung-Man;Chae, Kyo-Soon;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.988-992
    • /
    • 2007
  • Recently, dynamic system has been enlarged and is exposed to various types of disturbance. Thus designing controller for those dynamic system under random disturbance is not practically easy. As a result, the exact analysis for the system which is exposed to various irregular disturbance is quite important. In order to perform analysis, conventional BMR(Balanced Model Reduction) method is applied to moment equation in stochastic domain and reliable reduced order system model has been obtained.

  • PDF

A REVIEW ON REDUCTION IN FINITE ELEMENT ANALYSIS

  • Kim, Ki-Ook;Park, Young-Jae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • Reduction methods for large structural systems have been reviewed. Mai emphasis is put on the dynamic reduction. Recently, the computing resources and technologies have been expanded so fast that the huge matrices Invoked In the analysis of structural system can be processed without serious difficulties. For most users, however, the computer facilities are limited and the system reductions in some forms are required. The reduction procedure in static problems is simple and straightforward. The major task is the book-keeping in computations. In dynamic problems and structural optimization. however. the problem is much more complicated. The problem is, in general, nonlinear and hence the exact solution is not available. Therefore, approximate solutions are sought in an iterative manner. A proper convergence criterion needs to be employed in order to get an accurate solution efficiently. Several research works have been reported fer the structural optimization combined with system reductions.

  • PDF

Model reduction by the eigenvalue selected considering the error of the power series (멱급수 오차를 고려하여 선택된 고유치에 의한 모델 저차화 방법)

  • 김원호;최태호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.155-160
    • /
    • 1987
  • In this paper, the model reduction method of the linear time invariant continuous systems is proposed. The denominator of reduced order model is determined by the eigenvalue selected considering the error of the power series that exists between original system and reduced order system at each time moments. And the numerator of model is founded by the time moment matching method. The method suggested is compared with other various methods in examples.

  • PDF