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Abstract

Reduction methods for large structural systems have been reviewed. Main emphasis
is put on the dynamic reduction. Recently, the computing resources and technologies have
been expanded so fast that the huge matrices involved in the analysis of structural system
can be processed without serious difficulties. For most users, however, the computer facilities
are limited and the system reductions in some forms are required. The reduction procedure
in static problems is simple and straightforward. The major task is the book-keeping in
computations. In dynamic problems and structural optimization, however, the problem is
much more complicated. The problem is, in general, nonlinear and hence the exact solution
is not available. Therefore, approximate solutions are sought in an iterative manner. A proper
convergence criterion needs to be employed in order to get an accurate solution efficiently.
Several research works have been reported for the structural optimization combined with

system reductions.
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Introduction

Nowadays, the finite element method has been widely used for the static and dynamic analysis
of structural systems. As the system becomes large, the preparation of the input data can be a
big burden to users. The more difficult problem is, however, the huge computation required for
the generation of structural matrices and the solution of the problem. In general, more than 70%
of the computing time is spent on the solution procedure in the dynamic analysis. It is evident
that the development of supercomputers and parallel processing techniques can alleviate many of
the difficulties associated with large structural systems.

Even when new computational resources and technologies are available, quite different
approaches have been attempted to overcome the limitations of the conventional solution procedure.
In the substructure analysis, the whole system is divided into separate groups of elements called
substructures. The exact solution is obtained for static problems.

Sometimes, an approximate solution may be acceptable in the engineering sense, particularly
in dynamic analysis. Hence, there has been a steady interest in transforming the system into a subspace
and reducing the dimension of the structural matrices.

Of course, the reduction procedure should take less computational effort and save the total
computing cost. The main difficulty is how to maximize the computational efficiency without losing
the solution accuracy. The present study puts emphasis on the reduction schemes for dynamic
problems. Various reduction techniques have been considered to transform the original problem into
a reduced subspace. Depending on whether the physical degrees of freedom are included in the
reduced subspace, the reduction schemes can be divided into two categories; nodal and modal reductions.
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In the nodal reduction, a set of degrees of freedom called secondary are condensed out while
the primary ones are retained in the analysis. In the generation of element matrices, the reduction
in element level can be performed for the unloaded degrees of freedom. Static and dynamic condensations
are applied to dynamic problems. The term “static” indicates that only the stiffness matrix is
used in the reduction procedure. In the dynamic condensation, both stiffness and mass
matrices are used in an iterative manner.

The modal reduction employs a set of approximate modes which can closely represent the
real system. Eigenvectors and Ritz vectors are the most typical ones. Generalized coordinates are
introduced to show the contribution of each vector. The original problem is transformed into a
subspace of the generalized coordinates. In theory, however, the method is subject to a limitation.
The Rayleigh - Ritz method is a common approach. The subspace iteration method is used for
the eigenproblem.

Combined methods use both the primary degrees of freedom and the generalized coordinates
in a reduced subspace. The generalized dynamic reduction has been implemented in MSC/NASTRAN.
Recently, the hybrid dynamic condensation has been presented for dynamic problems. The method
is, in fact, a combination of dynamic condensation, modified subspace iteration, and modal reduction.

It is clear that the structural optimization is much more complicated than the analysis. Compared
with static systems, the optimization of dynamic system is more difficult and requires more calculations.
Therefore, reduction schemes have been applied successfully to dynamic optimization. Much calculation
can be saved without loss of accuracy in the optimum design. It is very promising that the structural
optimization of large systems becomes feasible through the use of various reduction schemes.

Reduction for Static Systems
1. Nodal Reduction
In finite element analysis of structural systems, the static equilibrium equation is written as
(k]{U} = (P}

where [k] is the stiffness matrix. The nodal displacement and load are denoted as {U} and
{P}, respectively. Equation (1) can be expressed in partitioned form,

[ =1 {e) - {5

where (U,) is the primary degrees of freedom which will be included in the analysis. The
secondary part {U,} will be condensed out. On some degrees of freedom, no external loads are
applied. Then, those degrees of freedom belong to {U,).

From the second equation of Eq.(2), we get

{U) = —lka]l" [k U} + [k J7HP)
Substituting Eq.(3) into the first equation in Eq.(2), one gets

(K] (U} = (P}
where the reduced stiffness matrix and load are

(K] = [k, — [kllkJ™! [kg]
P} = P} — [klkJ P}
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Note that the transformation of Eq.(3) is exact and hence the reduced equilibrium equation
(4) gives the exact solution.
2. Modal Reduction

The eigenvector expansion theorem states that any n-dimensional vector can be expressed
as a linear combination of n eigenvectors. Hence, the nodal displacement is expressed as

{U} = [0] {C} (6)
where [@] is the modal matrix composed of the eigenvectors and {C) is a vector of the
generalized coordinates. If p (<n) independent vectors are employed in the expression, Eq.(6)
is only an approximation. Then, we have
U} = [o,] {C)) )
Direct substitution of Eq.(7) into Eq.(1) gives a residual error in equilbrium.
R} = [k][o,] {C)} — (P} ®)
Assuming that the residual error weighted by [@,]T vanishes, one gets
(K] {C,} = (P) | ©)
where the reduced stiffness matrix and load vector are

(K, = (0,17 [k] [0,] P} = {0,]T(P) (10)

Reduction for Eigenproblems
1. Nodal Reduction
[> Guyan’s Static Condensation

For a discrete structural system, the equilibrium equation for undamped free vibration is written
as a general eigenproblem.

[k] {¢} = A [m] {4} (11)

where [k] and [m] are the stiffness and mass matrices. An eigenpair is denoted as A
and {¢). Equation (11) can be expressed in partitioned form,

[k =1 =l o= {3 a2

{¢,) andl {g) are the primary and secondary sets, respectively. The structural matrices
are also partitioned into the corresponding submatrices.
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In static condensation, the transformation matrix relating the primary and secondary sets
is approximated using the stiffness matrix.

{$} = —lk, 17! [k, Hg,)} = [T,] {¢,)

and the mode shape is written as
= [% =[] =
@ = | ¢S} = [T] (¢,} = [S] {8,)

Substituting Eq.(14) into Eq.(11), one gets the residual error in equilibrium because the
transformation is not exact.

{R} = [k][S]{¢,} — A[m][S]{g,}

If the residual weighted by [S]T vanishes, we get an eigenproblem expressed in terms of
the primary degrees of freedom.

(K] {g,} = A[M,] {¢,}
where
(K] = [k,] - [kJlkJ™! [k,]
[m,] = [m k™! [kgl — [kllkel ™ [mg)
+ [k dlke 17! [mJke 17t [k,)

=
It

This is Guyan’s static condensation for the general eigenproblem. The rate of convergence
depends on how many and which degrees of freedom the primary set should have. Engineering
judgment and experience are required for a proper choice of primary degrees of freedom. The primary
degrees of freedom should be uniformly distributed throughout the whole structure so that all the
probable modes may be excited. Improper selections may result in missing of some modes.

The convergence requirements is usually satisfied because the reduction schemes are used
to get an approximation for the lowest modes of a large structural system. Hence, the primary
set contains the degrees of freedom associated with the lowest modes and those for the higher
modes are eliminated. This is the basic assumption to be satisfied in condensation schemes.

Translational degrees of freedom are preferred to rotational ones even though the numerical
magnitude of the corresponding terms in mass matrices is larger than the translational counterpart.

[> Dynamic Condensation
Assume that the exact eigenvalue be written as
A= Ao + M

where A0 is an approximation. Then, the equilibrium equation (11) can be rewritten as

[DI{g} = 42 [m]{¢}
where {D]=[k}—A[m] is the dynamic stiffness matrix.

Equation (19) can be written in partitioned form as

(13)

(14)

15

(16)

an

(18)

(19)
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The transformation is performed through the use of dynamic stiffness matrix.
{¢} = —[D,]17' [D,Mg,) = [T,] {¢,) @1)

If Ao is a good approximation to give small AA or {¢,) has negligible mass, the above

transformation becomes accurate.
Through the transformation, an eigenproblem in the condensed subspace is obtained.

D] {¢,} = 432[M,] {g,} (22)
where
[D,] = [D,] - [DDJ'I[D,]
[M,] [m,;] - [m,D,J ' (D) — [D,ID, ' [mg] (23)
+ [D.JD,J) ! [m D! [D,]

It

From the smallest value of AA in Eq.(22), the approximation is renewed.
Ao + A — Ao @24

The iteration continues until a converged solution is obtained. Deterioration of the computational
efficiency may be attributable to repeated decomposition of [Dss].
2. Modal Reduction

[> Subspace Iteration Method

The iterative procedures determine the eigenvectors one by one starting from a single initial
vector. That is, each eigenvector is calculated with sufficient accuracy before the next one is initiated.
If many eigenvectors are desired, the sweeping technique must be applied.

In the subspace iteration method, however, several eigenvectors are calculatedsimultaneously.

Let’s consider a general eigenproblem of Eq.(11). The iteration starts from projection of [k] and [m]
onto a subspace by using q iteration vectors [X ]%*V.

[KJ = ([XJ**V)Tk}X &P

[M,] = ([X,1%* )T [m[X 1%V @9
An eigenproblem in g¢-dimensional subspace is solved to get q eigenpairs.
[KJlo,] = [M)0,]A,) (26)
Since [K,] and [M,] are symmetric, [@.] is orthogonal.
A better approximation can be obtained as
[ZJ®*D = [X ]%+D[p,] @7

In fact, the subspace eigenproblem can be obtained through the minimization of the Rayleigh’s
quotient of a linear combination of the vectors in [X ]¢%+D.
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The eigenproblem in the subspace only provides a set of orthogonal vectors which may be
the most probable candidate for the eigenvectors for the original system. Hence, a procedure of
the inverse iteration is employed in order to drive the iteration vectors to the lowest exact eigenvectors.

[k] [Xq](k+2) = [m] [Zq](k+l)

Some acceleration schemes such as overrelaxation of the iteration vectors and shifting are
used to get a better convergence. It has been shown that the effectiveness of the basic and the
accelerated subspace iteration methods depends on the number of eigenvectors to be sought, eigenvalue
distribution, and the bandwidth of the matrix.

3. Mixed Reduction
[> Generalized Dynamic Reduction

The generalized dynamic reduction is used to improve the accuracy of the usual static
condensation through the addition of the generalized coordinates. In the static condensation, the
transformation matrix is expressed in Eq.(13).

{$) = —[k 17! [k,)g,) = [T, 1{g,)

In the modal reduction, the eigenvector is approximated as

o= {4} =[] e

or
{¢,) = [0,]{C}} {6} = [0,HC)

Of course, a set of "approximate” eigenvectors which are rich in the lowest modes of the
system, need to be provided. Usually, the inverse power method (in fact, the subspace iteration
method) is applied to get the approximate set. Only several iterations are performed but not until
the complete convergence is reached.

Assume that the static condensation can be improved by adding the generalized coordinates

as
{8 = [T ] {¢) + [Q,] {C}
where
Q. = [0,] - [T ][0,]
Therefore, the transformation is expressed in terms of the primary set and the generalized
coordinates.

0 = (%= [f 3] {&) =15 {&]

It should be noted that the transformation matrix [S] is only an approximation.
Since the structural matrices are symmetric, the Galerkin’s method gives the same reduced
structural matrices. For eigenproblems, the equation is written as

<2 {&) = ) {&)

(28)

29)

(30)

3D

(32)
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where
[K,] = [SIT[k](S]

_ [ [k, ]+0k,JIT,] 0
0 [Qu ] Tk, Q]
[M,] = [S]T[m]S]
_ [ [m,, ]+ [m T 1+ [T Tmg, ) +[T,) [m JIT,] SYM. G3
[Q1TTm,,]+[Q,) [m J[T,] [Qq]Tm,JIQ,]

It can easily be seen that the reduced matrices are symmetric.

The accuracy and efficiency of the generalized dynamic reduction depends on two factors;
the selection of the primary degrees of freedom as in static condensations and the approximate
eigenmodes used for the generalized coordinates.

4. Hybrid Dynamic Condensation

In the dynamic condensation, the modal matrix containg p approximate eigenvectors can be
determined.

o, = | 3]

In theory, the transformation and the eigenproblem are good only for particular modes of

small AN, The vectors in [@,], however, satisfy the necessary condition of orthogonality and
hence offer a good candidate for the solution.

The approximate eigenvectors can be improved through the conventional inverse iteration.

[DI[X,] = [mllo,] = [B,]

which can be written in partitioned form as

D, D.][X,] _ [m, m]®,) _ B

D,, D:][x::] [m: m:][0::] = [B:]
The above equation can be reformulated to give

[D,] [X,] = [B,]
where
[B,]= [B,] — [D,l [D,]7! [B,l= [B,] — [T,7 [B,]

The reduced equation (37) for inverse iteration is exact while the equilibrium equation (22)

in dynamic condensation is an approximation for small 4.
With [X_] determined, we calculate [X,] as

[Xp] = [DG17! (= [DGIX,,]+[B,D = [Ty (X,]1+[D,]7! [B,]

The rate of convergence is defined for termination criterion as

(34

(35

(36)

37

(38

(3%
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par — 4
— Zlnew = “7old
Re = @ 05
where
M - {X}7 o [D] X},
e (X} e [m] (X},

Numerical examples show that the proper value of e; may be 10-° ~ 10°%.

When a converged solution is not obtained with maximum number of inverse iterations, the
direction of solution search needs to be changed. The approximate eigenvectors can be improved
through subspace transformation. Assume that a vector {Z} is a linear combination of the vectors
in [X)]

Z} = [X,] {q}
where {q) is the generalized coordinates.

The Rayleigh quotient of {Z} is written as

R(Z) — 2TDLZ) _ @7, IDIIX,)a)
@mlz) ~ @K, Tml(X,]a)

Considering that the Rayleigh quotient has a stationary value in the neighborhood of an
eigenvector, one gets

[X,1T[D} X, Ma) = Aag [X,]T[m][X, ]{q}
where 43 is the stationary value.

The eigensolution of Eq.(44) gives p eigenvectors or [Q,], which in turn yield p approximate
eigenvectors.

(z,] = [X,1Q,]

It can easily be seen that [Z)] is orthogonal with respect to [D] and [m].

[(Z,17[D1(Z,] = [Z,)"[m][Z,][44g]
diagonal diagonal
where [44g] is a diagonal matrix containing the approximate eigenvalues.

This is the equation of orthogonality which is a necessary condition for eigenvectors. Hence,
[Z,] is likely to be a better approximation.
It should be emphasized that the subspace is spanned by the approximate eigenvectors in
[X,] and the equation of orthogonality in the incomplete subspace is not a sufficient condition.
Hence, the improvement obtained through the eigensolution is subject to a limitation. This is one
of the most serious problems that subspace transformation methods have in practice.

As the exact solution is approached, the subspace eigensolution can not improve the approximation
because the vectors are nearly orthogonal. A threshold value ¢, can be assigned for the rate
of convergence, which dictates that the solution procedure skips the subspace transformation
and continues the inverse update. The proper value of ¢, may be 1072~ 102

An expanded subspace, if necessary, can be considered to get a more accurate solution. The
formulation is supplemented with the approximate eigenvectors.

(40)

(41

(42)

43)

@4

(45)

(46)
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{#) o = {8} + [Z,]{C}) @7
or
(%)= (4, 5 l|&) = =g @

The original system is transformed into a subspace of dimension 2p.

D] { g:} = 2] g:} 49)

where
[D,] = [SIT{DI1[S] (M,] = [S]T[m][S] (50)

The eigensolution in the expanded subspace not only gives an improved olution for the current
p modes but also provides good starting vectors hen next group of adjacent eigenmodes are desired.

Dynamic Optimization through System Reduction
1. Dynamic Condensation
Equation (11) can be rewritten as

[D] {¢} = ) 51
where [D]=[k]—A[m] is the dynamic stiffness matrix.

Equation (51) is expressed in partitioned form as

(32 Bl {= (3 o
For the perturbed system, the equation becomes
(32 oz &) - (0 o

From the second equation of Eq.(53), we get

{6} = {¢} + {4¢) (54)
where
{¢} = —[D,)"'[D,] {¢,7} (55)

Substituting Eqgs.(54) and (55) into Eq.(53) and eliminating {4¢} give the nonlinear perturbation
equation.

[D,,1{¢) +[D,,]{¢,}+[4D,]{¢) +[4D )4}
~([D)+ 14D, (D] +[4D) " NIAD M} +[ 4D )8, ) = (0)

(56)

The last term of Eq.(56) contains the inverse of an unknown matrix and an iterative procedure
is used to solve the nonlinear equation.



10 / 2002. 11. Vol.3 No.1 KSTAM, Member of IUTAM

2. Modal Reduction

The major difficultyin the structural optimization of large systems is the huge computing effort
necessary to evaluate the functions and their gradients with respect to the design variables. Hence,
various reduction methods have been combined with the structural optimization successfully.

The equation of motion for the baseline system is shown in Eq.(11).

(ki{g} = 4 [m]{¢}
If the system is perturbed, the equation becomes
(K¢} = & [m'H¢')

where the perturbations are expressed as

{k] = [k} + [4k]
[m] = [m] + [4m]
A = A+ 4A

(¢} = (¢} + {44}

The perturbed mode shapes can be approximated as a linear combination of p eigenvectors.
¢} = [o,] {C)}

In the mathematical programming for the structurtal optimization, the equality constraints is
expressed as theequilibrium equation.

[0,17([k]+[4kD[ 0, ){C,) = (A+41) [0,]7([m]+[4mD[ D, 1{C,)

The structural design variables are contained in [4k} and [4m]. 44 is a characteristic
design variable and the components in {C,} are the free variables.

Numerical Examples
1. Dynamic Analysis of Helicopter Tail-Boom

The tail-boom structure of Cobra helicopter is solved using the hybrid dynamic condensation.
The finite element model consists of 28 nodes, 48 beam elements, and 8 concentrated masses. Figure
1 show the geometrical layout of the tail-boom.

Four nodes at the support are constrained. Hence, the structure has 144 unconstrained degrees
of freedom. A finite element program, developed in house for general purpose, was employed
for the dynamic analysis.

The geometric and material properties are as follows.

cross — sectional area of beam A = 4.1494 x10? mm?
areamoment of inertia of beam I =53 x10° mm*
Young’s modulus E = 7.2 x10* N/mm?
mass density o = 2.77 x107° Nsec ?/mm*
concentra ted mass M = 2.268 =x10"2 Nsec?/mm

(57)

(58

(59

(60)
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Fig. 1 Helicopter tail-boom

Table. 1 shows the eigenvalues of the system. The formulation of averaged mass is used.
Since the tail-boom is nearly symmetric in transverse motions, many sets of close eigenvalues are
found. The eight nodes carrying the concentrated masses are included in the analysis and the remaining
ones are condensed out. The primary set contains the lateral translations and has 16 degrees of
freedom.

Table. 1 Eigenvalues of tall-boom

Mode Eigenvalue Mode Eigenvalue
1 1.72244 x103 9 3.70145 x10°
2 1.79624 x103 10  5.74278 x10°
3 8.76679 =103 11 6.13599 x10°
4 1.48218 x10* 12 7.07847 x10°
5 1.51423 =104 13 7.44577 x10°
6 6.28409 x10* 14 1.18694 x10°¢
7 1.93407 x10° 15  1.27885 x10°
8 3.67901 x10° 16 1.55295 x10°

To begin with, the shifting point is set to zero or A,=0 . Then, the first step is static

condensation, in which the relative errors range from 1073 to 1075 for the six lowest modes.
Three subspace iterations are performed and the results are illustrated in Table. 2. In each subspace
iteration, three inverse updates are used.
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Table. 2 Relative errors in eigenvalue

Mode Errors Mode Errors

1 5.79 x10 ! 9 1.63 x107%
2 — 2.60 x10 U 10 2.81 x107%
3 2.79 x10 U 11 1.30 x10~%
4 — 2.52 x1p0 "% 12 3.98 x10~%
5 2.47 x10 "% 13 5.42 x10~%®
6 — 3.49 x10 M 14 1.12 x107%
7 — 1.86 x10 7% 15 2.32 x107™
8 6.56 x10 ~M 16 1.47 x107®

2. Structural Optimization of Aluminum Casting

As a practical problem of large size, redesign of a small aluminum casting is considered,
as shown in Fig. 2. A total of 209 grid points and 312 finite elements are used for the finite element
modeling. The elements are divided into 10 design groups reducing the number of structural design
variables. The characteristic changes are to modify the fundamental frequency +30%.

Fig. 2 Aluminum casting and design groups

Table. 3 shows the rates of thickness change in each design group obtained through mathematical
programming and the reanalysis results. The weight of the structure is to be minimized.
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Table. 3 Values of Design Variables

Design variables K |h
a, 1.0804
as 1. 1242
s 1.4779
ay 1-0915
as 1.4568
ag ]..4556
as 1-9265
ag 0.9179
@ 0.9493
ay 0.9898
o x1073 3.2136 (30.00%)
Goals
Reanalysis @ x1073 3.1221 (26.29%)

Baseline system w, = 2.4720 x10® rad/sec

3. Redesign of Curved Shell

A uniform curved shell segment is redesigned using the dynamic condensation. The axial
length and outer radius are 76.2 mm. The plate thickness is 3.17 mm. The finite elements are divided
into 8 design groups, as shown in Fig. 3.

Fig. 3 Uniform shell and design group
The design goal is to modify the fifth mode of chordwise bending. With two top points on
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each side as a reference, the translational vibration of the top midpoint will be reduced. The primary
set has 3 degrees of freedom and 357 unconstrained degrees of freedom are included in the secondary
set. Plate thicknesses of the groups are the structural design variables. The total weight of the
structure is to be minimized.

The frequency will be increased by 30% along with the mode shape change. Table. 4 shows
the rates of the thickness changes of design groups. The reanalysis results are given in Table. 5.

Table. 4 Structural changes ( 44/ h)

Group 1, 8 2,7 3,6 4,5
Linear —0.300 —0.200 +0.174 —0.300
Nonlinear
first —0.326 —0.183 +0.214 —0.353
second —0.333 —0.167 +0.222 +0.358
third —0.333 —0.165 +0.223 +0.358

Table. 5 Characteristic Changes

Mode shape Frequency (w5 x1074)
(top midpoint)
Baseline system —0.46642 3.3451
Design goal —0.37314(—20%) 4.3486(+ 30%)
Linear —0.37173(—20%) 4.0949(+22%)
Nonlinear
first —0.36694(—21%) 4.2858(+28%)
second —0.37094(—20%) 4.3446(+30%)
third ~0.37180(—20%) 4,3486(+ 30%)
Conclusions

Various reduction schemes for static and dynamic problems have been reviewed. As the
dimension of the structural matrices, involved in the analysis and redesign, increases, the computational
effort can be a huge burden to users. Hence, some types of system reduction are required for
actual problems. The main concern is the computational efficiency and solution accuracy.

Most transformation methods which use a reduced subspace has a limitation in convergence.
Therefore, the procedure of inverse iteration is employed in order to accelerate the convergence.
At present, it is believed that the hybrid dynamic condensation is very promising for the general
eigenproblems.

Reduction methods were applied successfully to the structural optimization. The nonlinear
mathematical programming is used for the constrained minimization. More research works are necessary
for the development of an efficient and accurate method for both analysis and design.
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