• Title/Summary/Keyword: Reduction of system order

Search Result 1,886, Processing Time 0.033 seconds

An efficient parallel solution algorithm on the linear second-order partial differential equations with large sparse matrix being based on the block cyclic reduction technique (Block Cyclic Reduction 기법에 의한 대형 Sparse Matrix 선형 2계편미분방정식의 효율적인 병렬 해 알고리즘)

  • 이병홍;김정선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.553-564
    • /
    • 1990
  • The co-efficient matrix of linear second-order partial differential equations in the general form is partitioned with (n-1)x(n-1) submartices and is transformed into the block tridiagonal system. Then the cyclic odd-even reduction technique is applied to this system with the large-grain data granularity and the block cyclic reduction algorithm to solve unknown vectors of this system is created. But this block cyclic reduction technique is not suitable for the parallel processing system because of its parallelism chanigng at every computing stages. So a new algorithm for solving linear second-order partical differential equations is presentes by the block cyclic reduction technique which is modified in order to keep its parallelism constant, and to reduce gteatly its execution time. Both of these algoriths are compared and studied.

  • PDF

Reduced Order Identification and Stability Analysis of DC-DC Converters

  • Ali, Husan;Zheng, Xiancheng;Wu, Xiaohua;Zaman, Haider;Khan, Shahbaz
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.453-463
    • /
    • 2017
  • This paper discusses the measurement of frequency response functions for various dc-dc converters. The frequency domain identification procedure is applied to the measured frequency responses. The identified transfer functions are primarily used in developing behavioral models for dc-dc converters. Distributed power systems are based upon such converters in cascade, parallel and several other configurations. The system level analysis of a complete system becomes complex when the identified transfer functions are of high order. Therefore, a certain technique needs to be applied for order reduction of the identified transfer functions. During the process of order reduction, it has to be ensured that the system retains the dynamics of the full order system. The technique used here is based on the Hankel singular values of a system. A systematic procedure is given to retain the maximum energy states for the reduced order model. A dynamic analysis is performed for behavioral models based on full and reduced order frequency responses. The close agreement of results validates the effectiveness of the model order reduction. Stability is the key design objective for any system designer. Therefore, the measured frequency responses at the interface of the source and load are also used to predict stability of the system.

Dynamic Analysis of Rotating Bodies Using Model Order Reduction (모델차수축소기법을 이용한 회전체의 동해석)

  • Han, Jeong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.443-444
    • /
    • 2011
  • This paper discusses a model order reduction for large order rotor dynamics systems results from the finite element discretization. Typical rotor systems consist of a rotor, built-on parts, and a support system, and require prudent consideration in their dynamic analysis models because they include unsymmetric stiffness, localized nonproportional damping and frequency dependent gyroscopic effects. When the finite element model has a very large number of degrees of freedom because of complex geometry, repeated dynamic analyses to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to finish within a practical design cycle. In this paper, the Krylov-based model order reduction via moment matching significantly speeds up the dynamic analyses necessary to check eigenvalues and critical speeds of a Nelson-Vaugh rotor system. With this approach the dynamic simulation is efficiently repeated via a reduced system by changing a running rotational speed because it can be preserved as a parameter in the process of model reduction. The Campbell diagram by the reduced system shows very good agreement with that of the original system. A 3-D finite element model of the Nelson-Vaugh rotor system is taken as a numerical example to demonstrate the advantages of this model reduction for rotor dynamic simulation.

  • PDF

A new approach to model reduction using matrix pencil method (Matrix Pencil을 이용한 모델 저차화의 새로운 접근방법)

  • 권혁성;정정주;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • This paper proposes a new approach of balanced model reduction using matrix pencil. The algorithm presented in this paper is to convert full-rank high-order system into rank-deficient system using perturbation made by matrix pencil method. Then the system can be truncated to a low-order system that we want via balanced realization. We discuss the comparison with other methods and the various observations by simulations.

  • PDF

Approximation of the State Variables of the Original System from the Balanced Reduced Model (발란싱축소화로 구한 축소모델로부터 원 시스템 상태변수를 구하는 방법)

  • 정광영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.333-333
    • /
    • 2000
  • When the generalized singular perturbation method is used for model reduction, the state variables of the original system is reconstructed from the reduced order model. The state reduction error is defined, which shows how well the reconstructed state variables approximate the state variables of the original system equation.

  • PDF

Frequency weighted reduction using Lyapunov inequalities (Lyapunov 부등식을 이용한 주파수하중 차수축소)

  • 오도창;정은태;이상경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.12-12
    • /
    • 2000
  • This paper consider a new weighted model reduction using block diagonal solutions of Lyapunov inequalities. With the input and/or output weighting function, the stability of reduced order system is quaranteed and a priori error bound is proposed. to achieve this, after finding the solutions of two Lyapunov inequalities and balancing the full order system, we find the reduced order systems using the direct truncation and the singular perturbation approximation. The proposed method is compared with other existing methods using numerical example.

  • PDF

Quantity vs. Quality in the Model Order Reduction (MOR) of a Linear System

  • Casciati, Sara;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.99-109
    • /
    • 2014
  • The goal of any Model Order Reduction (MOR) technique is to build a model of order lower than the one of the real model, so that the computational effort is reduced, and the ability to estimate the input-output mapping of the original system is preserved in an important region of the input space. Actually, since only a subset of the input space is of interest, the matching is required only in this subset of the input space. In this contribution, the consequences on the achieved accuracy of adopting different reduction technique patterns is discussed mainly with reference to a linear case study.

SYNCHRONIZING INDIVIDUALLY OPTIMAL CYCLE TIMES ACROSS MULITI-BUYERS AND MULTI-PRODUCTS

  • Lee, Chang-Hwan
    • Management Science and Financial Engineering
    • /
    • v.4 no.2
    • /
    • pp.15-42
    • /
    • 1998
  • A joint problem of order delivery, setup reduction, and cost-sharing in a two-echelon inventory system in which a vendor supplies multiple products to a group of buyers is studied here. The basic premise is that buyers have independently implemented setup reduction programs to acquire benefits from small order sizes. Doing so, however, causes the buyers' individually optimal order cycles to be differ from that of the vendor. In conjunction with this, two models are considered. In the first model, a multi-buyers single product situation is considered in which the vendor implements a joint supply cycle policy. However, buyers, as the dominant party, insist after implementing the individually optimal setup reduction that the vendor accept their individually optimal order schedules. In the second model. a multi-products, single buyer situation is considered in which the buyer implements a joint order policy. Here, the vendor, as the dominant party, refuses to cooperate fully with the buyer's individually reduced joint order schedule, and designs his own individually optimal setup reduction mix for each product under a given budget constraint. This led to a study of an integrated Setup Reduction/Break-even Pricing Policy for each situation to eliminate mismatches in individually optimal cycle times.

  • PDF

Development of Acoustic Emission Monitoring System for Fault Detection of Thermal Reduction Reactor

  • Pakk, Gee-Young;Yoon, Ji-Sup;Park, Byung-Suk;Hong, Dong-Hee;Kim, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • The research on the development of the fault monitoring system for the thermal reduction reactor has been performed preliminarily in order to support the successful operation of the thermal reduction reactor. The final task of the development of the fault monitoring system is to assure the integrity of the thermal$_3$ reduction reactor by the acoustic emission (AE) method. The objectives of this paper are to identify and characterize the fault-induced signals for the discrimination of the various AE signals acquired during the reactor operation. The AE data acquisition and analysis system was constructed and applied to the fault monitoring of the small- scale reduction reactor, Through the series of experiments, the various signals such as background noise, operating signals, and fault-induced signals were measured and their characteristics were identified, which will be used in the signal discrimination for further application to full-scale thermal reduction reactor.

Frequency Weighted Controller Reduction of Closed-Loop System Using Lyapunov Inequalities (Lyapunov 부등식을 이용한 페루프시스템의 주파수하중 제어기 차수축소)

  • Oh, Do-Chang;Jeung, Eun-Tae;Lee, Kap-Rai;Kim, Jong-Hae;Lee, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.465-470
    • /
    • 2001
  • This paper considers a new weighed model reduction method using block diagonal solutions of Lyapunov inequalities. With the input and/or output weighting function, the stability of the reduced order system is guaranteed and an a priori error bound is proposed. to achieve this after finding the solutions of two Lyapunov inequalities and balancing the full order system, we find the reduced order systems using the direct truncation and the singular perturbation approximation. The proposed method is compared with other existing methods using numerical examples.

  • PDF