• Title/Summary/Keyword: Reductase

Search Result 1,682, Processing Time 0.03 seconds

Ribonucleotide Reductase Activity of Schizosaccbarornyces pombe Is Inhibited by Escherichia coli RecA Antibody (Schizosaccbarornyces pombe에서 Escherichia coli RecA 항체에 의한 Ribonucleotide Reductase 효소활성 저해)

  • Lee, Jung-Sup;Chun, Min-Suck;Kim, Ok-Bong;Park, Jong-Kun;Kim, Si-Wouk;Park, Yeal;Yang, Young-Ki;Hong, Seung-Hwan;Park, Sang-Dai
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.565-569
    • /
    • 1995
  • We have previoosly demonstrated that the RecA-like protein of Schizosaccharomyces pombe (S. pombe) is immunologically related to Escherichia coil (E. coil) RecA protein and that the cellular level of the protein is significantly increased by inhibitors of nucleotide pool-forming enzymes such as hydroxyurea (HU) and methotrexate (MTX) (lee and Park, 1994; lee et al., 1994). In this study, we report that the ribonudeotide redudase activity of S. pombe is inhibited by E. coil RecA antibody, as determined by thin layer chromatography using [5-$^3$H]CDP as a substrate. The relative activity of ribonucleotide reductase was dramatically inhibited by 100 mM of flu (26.4% reduction) in in vitro assay, compared to that of non-treated control. The ribonucleotide reductase activity was also inhibited by immunoprecipitation with E. coil RecA antibody (43.3% reduction). These results indicate that the strudure of S. pombe ribonucleotide reductase is in part similar to that of E. coil RecA protein.

  • PDF

Cholesterol inhibitory activities of kaempferol and quercetin isolated from Allium victorialis var. platyphyllum (산마늘로부터 단리한 kaempferol과 quercetin의 콜레스테롤 저하 활성)

  • Lee, Sung-Suk;Moon, Seo-Hyun;Lee, Hak-Ju;Choi, Don-Ha;Cho, Myung-Haing
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2004
  • Cholesterol inhibitory activity was investigated to develop the functional food from edible forest resources such as Allium victorialis var. platyphyllum and other 12 species. Among tested samples by enzyme-linked immunosorbant assay (ELISA), leaf extracts of A. victorialis var. platyphyllum inhibited 73.9% of the activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) which is the highly regulated and major rate-limiting of the cholesterol biosynthesis pathway. Moreover, those extracts inhibited 76.7% of squalene synthase which catalyzes the head-to-head condensation of two farnesyl pyrophosphate molecules to form squalene in the biosynthesis of cholesterol. In order to find out the compounds which would play a key role in inhibitory activity of cholesterol, kaempferol and quercetin were isolated from the dichloromethane soluble fraction of extracts of A. victorialis var. platyphyllum. Kampferol, quercetin and each soluble fraction was also subjected to the test of the mRNA expression of HMG-CoA reductase and squalene synthase by reverse transcriptase-polymerase chain reaction (RT-PCR) assay, respectively. By treating both enzymes with 10 ㎍/㎖ of kaempferol and quercetin for 24 hours, respectively, the mRNA expression was not observed, suggesting that both compounds inhibited the biosynthesis of cholesterol at mRNA level. In this regard, it could be inferred that cholesterol inhibitory activity of A. victorialis var. platyphyllum was derived from kaempferol and quercetin. Both compounds have already been found in many plant extracts including hardwood and softwood, but it might be first known that they have cholesterol inhibitory activity.

Selective Reduction by Microbial Aldehyde Reductase (미생물 알데히드 환원효소에 의한 선택적 환원)

  • Lee Young-Soo;Kim Kyung-Soon
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.375-381
    • /
    • 2006
  • Aldehyde reductase was purified to electrophoretic homogeneity from Saccharomyces cerevisiae, and then enzymatic reduction of substituted carbonyl compounds was carried out by using the purified aldehyde reductase as a biocatalyst. Under preparative scale reaction renditions, the enzymatic reduction proceeded in high chemical yield with excellent chemoselectivity. The enzymatic reduction product was identified by TLC, GC, Mass, NMR and FT-IR. Benzoic acid, an inhibitor of aldehyde reductase, also potently inhibited the reduction of substituded carbonyl compounds. This enzyme exhibited a broad substrate specificity , and can utilize both NADH and NADPH as cofactors. The enzyme was strongly inhibited by benzoic acid and quercetin. The apparent Km for 4-cyanobenzaldehyde and 3-nitrobenzamide were 4.894 mM and 0.305 mM, respectively.

Screening for Korean Vegetables with Anticarcinogenic Enzyme Inducing Activity Using Cell Culture System

  • Kim, Su-Mi;Ryu, Seung-Hee;Park, Hui-Don;Kim, Sung-Su;Kim, Jeong-Hwan;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.277-281
    • /
    • 1998
  • There is extensive evidence suggesting the protective role of fruits and vegetables against chemically induced carcinogenesis. We have tested the ability of a representative range of Korean vegetables to act as blocking agents against neoplastic initiation by determining the induction level of quinone reductase , an anticarcinogenci marker enzyme, in hepalclc 7 cells exposed to vegetable extracts. Among thirty vegetables tested, Arcitum lappa(Burdock), Brassica juncea (Mustard leaf), Pteridium aguilinum (Bracken) and Chrysanthemum cornoratium(Crown daisy) caused a significant induction of quinone teductase activity with a limited increase in arylhdrocarbon hydroxylase activity. Combination of crown daisy with burdock had synergistic effect on quinone reductase induction. Quinone reductase-inducing activity was found mostly in hesane and ehtylactate fractions of MeOH extract of crown daisy while it ws not quinone reductase activity in liver, kideny, lung, and small intestine, confirming the presence of potent QR inducer (s) in crown daisy. These sata suggest that some vegetables including crown daisy induced QR merits further investigation as a potential cancer preventive agent in human.

  • PDF

RELATION BETWEEN CARIES ACTIVITY AND ORAL HYGIENE HABITS IN PRESCHOOL CHILDREN (미취학아동의 우식활성과 구강위생습관의 상관성에 관한 연구)

  • Jo, Seon-A;Lee, Kwang-Hee;Kim, Dae-Eop;Jeong, Young-Seok
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.247-264
    • /
    • 1997
  • 501 preschool children from 4 to 6 years were examined for their salivary reductase activity and caries experience by Resazurin Disc Test and dental examination respectively. We asked the parents about their children's oral hygiene habits, between-meal eating habits, and physical exercise habits by the questionnaire. Toothbrushing frequency had negative relation to salivary reductase activity and caries experience. Caries experience was low when parents did toothbrushing for children, when teeth were brushed at bedtime, and when fluoride toothpastes were used. Salivary reductase activity and caries experience were high in bread & cookies group, chocolates & candies group, milk & soft drink group, and fruits & vegetables group in order. Caries experience was high in case of irregular between-meal eating. Sweet food eating frequency had positive relation to caries experience. Caries activity was low in case of eating homemade non-sweet between-meals. Salivary reductase activity and caries experience were low when gum-chewing frequency was high. Salivary reductase activity and caries experience were high when the amount of physical exercise was low.

  • PDF

Sulfhydryl-Related and Phenylpropanoid-Synthesizing Enzymes in Arabidopsis thaliana Leaves after Treatments with Hydrogen Peroxide, Heavy Metals, and Glyphosate

  • Park, Keum-Nam;Sa, Jae-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • Three-week grown Arabidopsis thaliana leaves were wounded by cutting whole leaves with a razor blade into pieces (about$3\;mm\;{\times}\;3\;mm$) submerged in various solutions, and incubated in a growth chamber for 24 h. We measured and compared activities of several enzymes such as phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), thioredoxin, thioredoxin reductase, thioltransferase, glutathione reductase, and $NADP^+$ -malate dehydrogenase. PAL activity was decreased in $HgCl_2$-, $CdCl_2$-, and glyphosate-treated leaf slices, and could not be detected after treatment with $CdCl_2$. TAL activity was found to be maximal in the $CdCl_2$-treated leaf slices. Activity of thioredoxin, a small protein known as a cofactor of ribonucleotide reductase and a regulator of photosynthesis, was significantly increased in the $CdCl_2$-treated leaf slices, while thioredoxin reductase activity was maximal in the $HgCl_2$-treated leaf slices. Thioltransferase and glutathione reductase activities were significantly decreased in the $HgCl_2$-treated leaf slices. $NADP^+$ -malate dehydrogenase activity remained relatively constant after the chemical treatments. Our results strongly indicate that sulfhydryl-related and phenylpropanoid-synthesizing enzyme activities are affected by chemical treatments such as hydrogen peroxide, heavy metals, and glyphosate.

  • PDF

Expression Analysis of ${\beta}$-Ketothiolase and Acetoacetyl-CoA Reductase of Rhodobacter sphaeroides

  • KHO, DHONG HYO;CHEOL YUN JEONG;JEONG JUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1031-1037
    • /
    • 2001
  • By a sequential action of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, two molecules of acetyl-CoA re converted into D-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyrate (PHB) of rhodobacter sphaeroides. The ${\beta}$-ketothiolase gene, phbA, and acetoacetyl-CoA reductase gene, phbB, were cloned and analyzed for their expression. Enzyme activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase showed constitutive levels during aerobic and photoheterotrophic growth of R. sphaeroides. In addition, no difference of each enzyme activity was observed between cells grown aerobically and photoheterotrophically. The constitutive level of the enzyme activities are regulated according to the growth phases along with growth conditions. Thus, phbAB expression is not determinative in regulating the PB content. On the other hand, phbA-deleted cell AZI accumulated only $10\%$ PHB of the wild-type, and an elevated dosage of phbAB in trans in R. sphaeroides resulted in a higher content of PHB, indicating that phbAB codes for the enzymes responsible for providing the main supply of subsyrate for PHB synthase. PHB formation by an alternative pathway that does not does not depend on the phbA-and phbB-coding enzymes is also proposed.

  • PDF

Membrane-Associated Hexavalent Chromium Reductase of Bacillus megaterium TKW3 with Induced Expression

  • Cheung K.H.;Lai H.Y.;Gu Ji-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.855-862
    • /
    • 2006
  • Hexavalent chromium ($Cr^{6+}$) is a highly harmful pollutant, which can be detoxified and precipitated through reduction to $Cr^{3+}$. Bacillus megaterium TKW3 previously isolated from chromium-contaminated marine sediments was capable of reducing $Cr^{6+}$ in concomitance with metalloids ($Se^{4+}$, $Se^{6+}$, and $As^{5+}$). Notwithstanding approximately 50% inhibition, it was the first report of simultaneous bacterial reduction of $Cr^{6+}$ and $Se^{4+}$ (to elemental Se). No significant difference was observed among electron donors (glucose, maltose, and mannitol) on $Cr^{6+}$ reduction by B. megaterium TKW3. The reduction was constitutive and determined to be non-plasmid mediated. Peptide mass fingerprints (PMF) revealed a novel aerobic membrane-associated reductase with $Cr^{6+}$-induced expression and specific reductive activity (in nmol $Cr^{6+}$/mg protein/min) of 0.220 as compared with 0.087 of the soluble protein fraction. Respiratory inhibitor $NaN_3$ did not interfere with the reductase activity. Transmission electron microscopy with energy dispersive X-ray (TEM-EDX) analysis confirmed the aggregation of reduced chromium along the intracellular membrane region. Future identification of the N-terminal amino acid sequence of this reductase will facilitate purification and understanding of its enzymatic action.

The Effects of Growth Inhibition and Quinone Reductase Activity Stimulation of Celastrus Orbiculatus Fractions in Various Cancer Cells (노박덩굴 분획물의 암세포 증식 억제 효과 및 Quinone Reductase 활성 증가효과)

  • Ku, Mi-Jeong;Shin, Mi-Ok
    • Journal of Nutrition and Health
    • /
    • v.40 no.6
    • /
    • pp.493-499
    • /
    • 2007
  • Celastrus orbiculatus (CO) has been used as a traditional herb medicine to treat fever, chill, joint pain, edema, rheumatoid arthritis and bacterial infection in China and Korea. In this study, we investigated anticarcinogenic effects of Celastrus orbiculatus (CO). CO was extracted with methanol (COM), and then further fractionated into four different types: methanol (COMM), hexane (COMH), butanol (COMB) and aqueous (COMA) partition layers. We determined the cytotoxicity of these four partitions in four kind of cancer cell lines, such as HepG2, MCF-7, HT29 and B16F10 Cells by MTT assay. Among various partition layers of CO, the COMM showed the strongest cytotoxic effects on cancer cell lines we used. We also observed quinone reductase (QR) induced effects in all partition layers of CO on HepG2 cells. The QR induced effects of COMM on HepG2 cells at 80 ${\mu}$ g/mL concentration indicated 3.28 to a control value of 1.0. The COMM showed the highest induction activity of quinone reductase on HepG2 cells among the other partition layers. Although further studies are needed, the present work suggests that CO may be a chemopreventive agent for the treatment of human cells.

Role of Osmotic and Salt Stress in the Expression of Erythrose Reductase in Candida magnoliae

  • Park, Eun-Hee;Lee, Ha-Yeon;Ryu, Yeon-Woo;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1064-1068
    • /
    • 2011
  • The osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG-3'), found in Saccharomyces cerevisiae, exists 72 nucleotides upstream of the translation initiation codon. An enzyme activity assay and semiquantitative reverse transcription polymerase chain reaction revealed that the expression of CmER is upregulated under osmotic and salt stress conditions caused by a high concentration of sugar, KCl, and NaCl. However, CmER was not affected by osmotic and oxidative stress induced by sorbitol and $H_2O_2$, respectively. The basal transcript level of CmER in the presence of sucrose was higher than that in cells treated with fructose and glucose, indicating that the response of CmER to sugar stress is different from that of GRE3 in S. cerevisiae, which expresses aldose reductase in a sugarindependent manner. It was concluded that regulation of CmER differs from that of other aldose reductases in S. cerevisiae.