• 제목/요약/키워드: Reducing Carbon

검색결과 915건 처리시간 0.026초

탄소 제로화를 위한 혁신 기술 연구: 건설 및 콘크리트 산업에서의 이산화탄소 저감 방안 동향 (Research on Innovation Technologies for Zero Carbon: Carbon Dioxide Reduction in Construction and Concrete Industries)

  • 김주현;박정준;김종규
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.549-563
    • /
    • 2022
  • Continuous global warming is causing ecosystem destruction and direct damage to human life. The main cause of global warming is greenhouse gases, which account for more than 90 % of carbon dioxide. The leaders of each country signed the Paris Agreement at the United Nations Convention on Climate Change (UNFCCC) to reduce greenhouse gas emissions. Currently, the total amount of CO2 emitted from South Korea is 664.7 million tons as of 2018, ranking eighth in the world. 37 % of South Korea's total CO2 emissions come from the construction & building field, especially the cement production, which is a construction material. Carbon reduction technologies can be largely divided into four types: carbon reduction (CC), carbon reduction and storage technology (CCS), carbon reduction and utilization technology (CCU), and carbon reduction, storage and utilization technology (CCUS). Overseas, CCUS technology is mainly applied to reduce and store CO2 emitted from construction and construction field. A technology for permanently storing CO2 through mineralization by capturing CO2 and utilizing CO2 into a cement production process was developed, and this technology is applied to the entire cement industry. However, the development of CCUS technology applicable to the cement industry is still insignificant in South Korea. In this study, carbon dioxide reduction technology and methods for reducing carbon dioxide emitted during the cement manufacturing process, which is the main component of concrete mainly used in civil engineering construction, were investigated. Overseas, it has reached the commercialization stage beyond the demonstration stage as a way to reduce carbon dioxide by vomiting carbonation reactions. Accordingly, if carbon dioxide reduction plan technology generated during cement manufacturing is developed based on domestic technology differentiated from foreign technology, it is expected to contribute one more step to the carbon neutrality policy.

촉매 전환을 이용한 이산화탄소의 고부가 가치제품 생산에 대한 최근 연구 동향 (Recent Research Trends of Catalytic Conversion of CO2 to High-value Chemicals)

  • 송기훈;류준형;정종식
    • Korean Chemical Engineering Research
    • /
    • 제47권5호
    • /
    • pp.519-530
    • /
    • 2009
  • 온실 가스의 주원인인 이산화탄소 발생의 저감은 범세계적으로 중요한 문제가 되었다. 이산화탄소를 단순히 분리하고 외부와 격리시키는 것보다는 이를 이용하여 고부가가치의 화학제품으로 전환 가능하다는 점에서 이산화탄소의 자원화에 대해 많은 관심을 받고 있다. 본 논문에서는 이산화탄소의 촉매 전환을 통한 합성가스 생산의 방법으로서 이산화탄소 개질, 삼중 개질 그리고 내부 개질 고체 산화형 연료 전지(Solid Oxide Fuel Cell) 시스템과 연계하여 전기와 합성가스를 동시에 생산하는 기술로 정하고 이에 대한 최근 연구 동향을 정리하였다. 또한 합성가스로부터 Fischer-Tropsch 합성을 통한 장쇄 탄화수소 생성과 Dimethyl Ether(DME) 생성을 중심으로 한 유용한 화학제품을 생산에 관한 연구 동향을 포함하였다.

태양광 패널 적용 방열용 탄소소재의 제조 및 열전달 수치해석 (Numerical Analysis of Heat Transfer and Fabrication of Carbon Material for Heat Dissipation in Solar Panel)

  • 박헌수;강철희;김홍건
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.82-90
    • /
    • 2019
  • This analysis demonstrates the effective removal of heat generated from a solar panel's output degradation factor solar cells (the solar panel's output deterioration factor), and solves the problems of oxidation and corrosion in existing metal heat sinks. The heat-dissipating test specimen was prepared using carbon materials; then, its thermal conductivity and its effectiveness in reducing temperatures were studied using heat transfer numerical analysis. As a result, the test specimen of the 30g/㎡ basis weight containing 80% of carbon fiber impregnated with carbon ink showed the highest thermal conductivity 6.96 W/(m K). This is because the surface that directly contacted the solar panel had almost no pores, and the conduction of heat to the panels appeared to be active. In addition, a large surface area was exposed to the atmosphere, which is considered advantageous in heat dissipation. Finally, numerical analysis confirmed the temperature reduction effectiveness of 2.18℃ in a solar panel and 1.08℃ in a solar cell, depending on the application of heat dissipating materials.

Tribological Properties of Carbon black added Acrylonitrile-butadiene Rubber

  • Cho, Kyung-Hoon;Lee, Yang-Bok;Lim, Dae-Soon
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.601-605
    • /
    • 2007
  • The tribological properties of acrylonitrile-butadiene rubber (NBR) filled with two kinds of carbon black filler were examined. Different types of Semi-Reinforcing Furnace (SRF), and High Abrasion Furnace (HAF) blacks were used as filler material to test the influence of carbon black particle size on the friction and wear of NBR. Results from tribological tests using a ball on disk method showed that the smaller HAF particles were more effective for reducing the wear of NBR during frictional sliding. The hardness, elastic modulus at 100% elongation, and elongation at break were measured to examine the correlation between the effects of carbon black on the mechanical and tribological properties of the NBR specimens. The wear tracks of the NBR specimens were observed with scanning electron microscopy (SEM). The wear tracks for NBR with different ratios of SRF and HAF showed clearly different abrasion patterns. Mechanisms for the friction and wear behavior of NBR with different sizes of carbon black filler were proposed using evidence from wear track observation, as well as the mechanical and tribological test results.

Two Decades of International Climate Negotiations - Carbon Budget Allocation Approach to Re-shaping Developing Country Strategies

  • Yedla, Sudhakar;Garg, Sandhya
    • East Asian Economic Review
    • /
    • 제18권3호
    • /
    • pp.277-299
    • /
    • 2014
  • Climate negotiations have been going on for the last two decades and the awareness for impacts of climate change has improved substantially. However, the trends of global $CO_2$ emissions did not reveal any encouraging signs, with developing countries emitting even more $CO_2$ and industrialized nations showing no signs of reducing emissions to below their 1990 levels. In order to meet the ambitious targets set by the Stern report for the next two decades, it is important to find new and path-breaking approaches to climate change. This paper attempts to analyze the use of carbon/development space historically, at present and in the future with a focus on equity. Trends analysis focuses on the last two decades (Post Rio) and the carbon budget based analysis considers a period of 1850-2050. Industrialized countries are found to have significantly overshot their budgeted allocation for the last 160 years. Both the developing and industrialized countries are overshooting the present budget estimates based on world per capita budget for the next forty years and proportional to the population of each country. It is important for the industrialized countries to bring down their emissions to meet their carbon budgets while the developing countries use their development space as a guideline for their development path. Furthermore, this paper presents aggressive and regressive scenarios for the industrialized countries to compensate for the climate debt they have created.

Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume

  • Aziman, Eli Syafiqah;Ismail, Aznan Fazli;Muttalib, Nabilla Abdul;Hanifah, Muhammad Syafiq
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2926-2936
    • /
    • 2021
  • Rare-earth (RE) industries generate a massive amount of radioactive residue containing high thorium concentrations. Due to the fact that thorium is considered a non-economic element, large volume of these RE processed residues are commonly disposed of without treatment. It is essential to study an appropriate treatment that could reduce the volume of waste for final disposition. To this end, this research investigates the applicability of carbon-based adsorbent in separating thorium from aqueous phase sulphate is obtained from the cracking and leaching process of solid rare-earth by-product residue. Adsorption of thorium from the aqueous phase sulphate by carbon-based electrodes was investigated through electrosorption experiments conducted at a duration of 180 minutes with a positive potential variable range of +0.2V to +0.6V (vs. Ag/AgCl). Through this research, the specific capacity obtained was equivalent to 1.0 to 5.14 mg-Th/g-Carbon. Furthermore, electrosorption of thorium ions from aqueous phase sulphate is found to be most favorable at a higher positive potential of +0.6V (vs. Ag/AgCl). This study's findings elucidate the removal of thorium from the rare-earth residue by carbon-based electrodes and simultaneously its potential to reduce disposal waste of untreated residue.

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

암모니아의 특성에 따른 활용 현황과 부식 손상에 대한 고찰 (A Study on the Utilization Status and Corrosion Damage with Ammonia Characteristics)

  • 이승준
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.125-136
    • /
    • 2023
  • Recently, ammonia has emerged as an alternative energy source that can reduce carbon emissions in various industries. Ammonia is used as a fuel in internal combustion engines because it contains no carbon in its components and does not emit any carbon when burned. It is also used in various fields such as fertilizer production, refrigeration, cleaning and disinfection, and drug manufacturing due to its unique characteristics, such as high volatility and easy solubility in water. However, it is highly corrosive to metals and is a toxic gas that can pose a risk to human health, so caution must be exercised when using it. In particular, stress corrosion cracking may occur in containers or manufacturing facilities made of carbon-manganese steel or nickel steel, so special care is needed. As ammonia has emerged as an alternative fuel for reducing carbon emissions, there is a need for a rapid response. Therefore, based on a deep understanding of the causes and mechanisms of ammonia corrosion, it is important to develop new corrosion inhibitors, improve corrosion monitoring and prediction systems, and study corrosion prevention design.

A Study on the Optimal Method of Eco-Friendly Recycling through the Comparative Analysis of the Quantitative Calculation and Scope of Recycling

  • Seung-jun WOO;Eun-gyu LEE;Chul-hyun NAM;Kang-hyuk LEE;Woo-Taeg KWON;Hee-Sang YU
    • 웰빙융합연구
    • /
    • 제7권3호
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: The purpose of this study is to present an efficient emission reduction ratio of plastic to reduce carbon dioxide, the main cause of greenhouse gases. Research design, data and methodology: This study calculated the absolute value of carbon dioxide by setting an equation through the emission coefficient using the US EPA's WARM model. Results: In the recycling ratio of 70%, it was found that the energy recovery ratio was 15.6%, which was the energy recovery ratio without generating carbon dioxide. When carbon dioxide is generated by changing plastic waste emissions, optimal efficiency is achieved by reducing emissions by 10% to 30% of energy recovery ratio, 20% to 50% of energy recovery ratio, and 30% to 80% or more of energy recovery ratio. Conclusions: The recycling rate should be set at a minimum of 70%, so that a carbon dioxide-free energy recovery rate could be obtained during the recycling process, supporting an eco-friendly basis for environmental policies aimed at this rate. In addition, it was possible to suggest that it is essential to reduce emissions by at least 30% for eco-friendly recycling measures that can achieve both economic and environmental feasibility in the energy recovery process through incineration during recycling in Korea.

SDGs 연계 교육에서 예비 지구과학 교사들의 탄소 소양 (Carbon Literacy on Education in Connection with SDGs of the Pre-service Earth Science Teachers)

  • 김윤지
    • 대한지구과학교육학회지
    • /
    • 제14권3호
    • /
    • pp.292-301
    • /
    • 2021
  • 본 연구는 지구과학교육을 전공하는 예비교사들에게 SDGs(지속가능발전목표)와 연계된 ESD(지속가능발전교육)을 적용하기 위한 기초 연구이다. 연구의 목적은 예비교사가 내면화 하고 있는 탄소발자국에 대한 인식과 태도 및 지식, 주관적 규범 및 행동 통제를 분석하여 탄소 소양을 평가하는 것이다. 예비교사들은 탄소 발자국을 자신의 책임으로 인식하고 있지만, 비용을 지불하고 불편을 감수하는데 소극적인 이중적 태도를 갖고 있다. 또한 탄소 발자국을 줄이기 위한 행동을 지지하지만, 요구하지는 않는다. 탄소 저감 행동에 대한 상식은 충분한 반면, 지구 온난화의 원인과 결과에 대한 개념은 불안정하다. 예비교사들은 학교 현장으로 배출되어 수많은 학생들에게 지구 온난화 문제를 가르치게 될 것이다. 따라서 탄소 발자국을 줄이는 경제적 비용과 사회적 책임에 대한 소양 교육이 필수적이며, 생각과 행동 사이의 간극을 메울 수 있는 방법을 찾아야 할 것이다. 예비교사들의 탄소 소양(carbon literacy)에 대한 연구로부터 ESD로 이어지는 교육이 실현되기를 바란다.