Browse > Article
http://dx.doi.org/10.1016/j.net.2021.03.032

Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume  

Aziman, Eli Syafiqah (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Ismail, Aznan Fazli (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Muttalib, Nabilla Abdul (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Hanifah, Muhammad Syafiq (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Publication Information
Nuclear Engineering and Technology / v.53, no.9, 2021 , pp. 2926-2936 More about this Journal
Abstract
Rare-earth (RE) industries generate a massive amount of radioactive residue containing high thorium concentrations. Due to the fact that thorium is considered a non-economic element, large volume of these RE processed residues are commonly disposed of without treatment. It is essential to study an appropriate treatment that could reduce the volume of waste for final disposition. To this end, this research investigates the applicability of carbon-based adsorbent in separating thorium from aqueous phase sulphate is obtained from the cracking and leaching process of solid rare-earth by-product residue. Adsorption of thorium from the aqueous phase sulphate by carbon-based electrodes was investigated through electrosorption experiments conducted at a duration of 180 minutes with a positive potential variable range of +0.2V to +0.6V (vs. Ag/AgCl). Through this research, the specific capacity obtained was equivalent to 1.0 to 5.14 mg-Th/g-Carbon. Furthermore, electrosorption of thorium ions from aqueous phase sulphate is found to be most favorable at a higher positive potential of +0.6V (vs. Ag/AgCl). This study's findings elucidate the removal of thorium from the rare-earth residue by carbon-based electrodes and simultaneously its potential to reduce disposal waste of untreated residue.
Keywords
Radioactive waste; Thorium; Carbon-based electrode; Electrosorption;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Dai, L. Xia, S. Song, C. Peng, J.R. Rangel-Mendez, R. Cruz-Gaona, Electrosorption of As(III) in aqueous solutions with activated carbon as the electrode Applied Surface, Science 434 (2018) 816-821, https://doi.org/10.1016/j.apsusc.2017.10.238.   DOI
2 C.C. Huang, S.F. Siao, Removal of copper ions from an aqueous solution containing a chelating agent by electrosorption on mesoporous carbon electrodes, J. Taiwan Inst. Chem. Eng. 85 (2018) 29-39, https://doi.org/10.1016/j.jtice.2018.02.005.   DOI
3 D. Hillel, Environmental Soil Physics, Academic Press, San Diego, CA, 1998.
4 D. Ghosh, R. Biswas, Theoretical calculation of absolute radii of atoms and ions. Part 2. The ionic radii, Int. J. Mol. Sci. 4 (6) (2003) 379-407, https://doi.org/10.3390/i4060379.   DOI
5 P.D. Bhalara, D. Punetha, K. Balasubramanian, Kinetic and isotherm analysis for selective thorium(IV) retrieval from aqueous environment using ecofriendly cellulose composite, Int. J. Environ. Sci. Technol. 12 (10) (2014) 3095-3106, https://doi.org/10.1007/s13762-014-0682-0.   DOI
6 B.W. Jordan, R.G. Eggert, B.W. Dixon, B.W. Carlsen, Thorium: crustal abundance, joint production, and economic availability, Resour. Pol. 44 (2015) 81-93, https://doi.org/10.1016/j.resourpol.2015.02.002.   DOI
7 M.H. Rabir, A.F. Ismail, M.S. Yahya, Review of the microheterogeneous thoriaurania fuel for micro-sized high temperature reactors, Int. J. Energy Res. (2020) er.5923, https://doi.org/10.1002/er.5923.   DOI
8 OECD-NEA, Organisation for Economic Co-operation and Development, Nuclear Energy Agency; International Atomic Energy Agency (IAEA), Uranium Resources 2011: Production and Demand; Nuclear Energy Agency (NEA): Andre-Pascal, Paris, France, 2012.
9 S.F. Ashley, G.T. Parks, W.J. Nuttall, C. Boxall, R.W. Grimes, Thorium fuel has risks, Nature 492 (2012) 31-33, https://doi.org/10.1038/492031a.   DOI
10 B.P. Sobolev, Lanthanum and lanthanide Trifluorides : lanthanide contraction and volume of fluorine ion, 2, in: Crystallography Reports, vol. 65 Pleiades Publishing, Inc, New York, United States, 2020, pp. 175-181, https://doi.org/10.1134/S1063774520020212.   DOI
11 W. Bisset, H. Jacobs, N. Koshti, P. Stark, A. Gopalan, Synthesis and metal ion complexation properties of a novel polyethyleneimine N-methylhydroxamic acid water soluble polymer, React. Funct. Polym. 55 (2) (2003) 109-119, https://doi.org/10.1016/S1381-5148(02)00199-2.   DOI
12 A.H.J. Mohd Salehuddin, A.F. Ismail, C.N.A.C.Z. Bahri, E.S. Aziman, Economic analysis of thorium extraction from monazite, Nucl. Eng. Technol. 51 (2) (2019) 631-640, https://doi.org/10.1016/j.net.2018.11.005.   DOI
13 S.S. Kim, G.N. Kim, U.R. Park, J.K. Moon, Development of a practical decontamination procedure for uranium-contaminated concrete waste, J. Radioanal. Nucl. Chem. 302 (1) (2014) 611-616, https://doi.org/10.1007/s10967-014-3178-y.   DOI
14 C.N.A.C.Z. Bahri, A.F. Ismail, A.A. Majid, M.I.F. Mohd Ruf, W.M. Al-Areqi, Extraction and purification of thorium oxide (ThO2) from monazite mineral, Sains Malays. 47 (8) (2018) 1873-1882, https://doi.org/10.17576/jsm-2018-4708-28.   DOI
15 C.N.A.C.Z. Bahri, A.F. Ismail, A.A. Majid, Synthesis of thorium tetrafluoride (ThF4) by ammonium hydrogen difluoride (NH4HF2), Nucl. Eng. Technol. 51 (3) (2019) 792-799, https://doi.org/10.1016/j.net.2018.12.023.   DOI
16 H. Heshmati, H.G. Gilani, M. Torab-Mostaedi, A. Haidary, Adsorptive removal of thorium (IV) from aqueous solutions using synthesised polyamidoxime chelating resin: equilibrium, kinetic, and thermodynamic studies, J. Dispersion Sci. Technol. 35 (4) (2014) 501-509, https://doi.org/10.1080/01932691.2013.796886.   DOI
17 E.S. Aziman, A.F. Ismail, Progress in Nuclear Energy Frontier looking of rareearth processed residue as sustainable thorium resources: an Insight into chemical composition and separation of thorium, Prog. Nucl. Energy 128 (2020), 103471, https://doi.org/10.1016/j.pnucene.2020.103471.   DOI
18 M.A. Mahmoud, A. Abutaleb, I.M.H. Maafa, I.Y. Qudsieh, E.A. Elshehy, Synthesis of polyvinylpyrrolidone magnetic activated carbon for removal of Th (IV) from aqueous solution, Environ. Nanotechnol. Monit. Manag. 11 (2019), https://doi.org/10.1016/j.enmm.2018.10.006.   DOI
19 USGS, United States Geological Survey, Thorium. Minerals Yearbook 2011, United States Geological Survey, Reston, Virginia, United States, 2013, pp. 76.1-76.3. http://minerals.usgs.gov/minerals/pubs/commodity/thorium/myb1-2011-thori.pdf. (Accessed 20 November 2019).
20 OECD-NEA, Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, Introduction of Thorium in the Nuclear Fuel Cycle, Nuclear Energy Agency (NEA): Issy-lesMoulineaux, France, 2015, pp. 21-32.
21 A.F. Ismail, M.S. Yim, Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater, Nucl. Eng. Technol. 47 (5) (2015) 579-587, https://doi.org/10.1016/j.net.2015.02.002.   DOI
22 E.S. Aziman, A.F. Ismail, IOP Conf. Ser. Mater. Sci. Eng. 785 (2020), 012014, https://doi.org/10.1088/1757-899X/785/1/012014.   DOI
23 C. Liu, P.C. Hsu, J. Xie, J. Zhao, T. Wu, H. Wang, Y. Cui, A half-wave rectified alternating current electrochemical method for uranium extraction from seawater, Nat. Energy 2 (4) (2017), https://doi.org/10.1038/nenergy.2017.7.   DOI
24 IAEA, Combined Methods for Liquid Radioactive Waste Treatment, 2003. IAEA-TECDOC-1336.
25 Z. Zhi-wei, X. Guo-xuan, L. Yun-hai, C. Xiao-hong, X. Zhi-bin, Removal of thorium(IV) from aqueous solutions by carboxyl-rich hydrothermal carbon spheres through low-temperature heat treatment in air, Desalination Water Treat. 54 (9) (2015) 2516-2529, https://doi.org/10.1080/19443994.2014.899520.   DOI
26 S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkoski, The characterisation of activated carbons with oxygen and nitrogen surface groups, Carbon 35 (12) (1997) 1799-1810, https://doi.org/10.1016/S0008-6223(97)00096-1.   DOI
27 C.D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogenbonding interaction, J. Am. Chem. Soc. 128 (2006) 5316-5317.   DOI
28 J. Saleem, U. Shahid, M. Bin Hijab, H. Mackey, G. Mckay, Production and Applications of Activated Carbons as Adsorbents from Olive Stones, Biomass Conversion and Biorefinery, 2019, pp. 775-802.
29 I.G. Kim, S.S. Kim, G.N. Kim, G.S. Han, J.W. Choi, Reduction of radioactive waste from remediation of uranium-contaminated soil, Nucl. Eng. Technol. 48 (3) (2016) 840-846, https://doi.org/10.1016/j.net.2016.01.017.   DOI
30 Mohamed F. Cheira, Performance of poly sulfonamide/nano-silica composite for adsorption of thorium ions from sulfate solution, SN Appl. Sci. 2 (3) (2020) 398, https://doi.org/10.1007/s42452-020-2221-6.   DOI
31 W. Xing, C. Liu, Z. Zhou, J. Zhou, G. Wang, S. Zhuo, Z. Yan, Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons, Nanoscale Res. Lett. 9 (1) (2014) 1-8, https://doi.org/10.1186/1556-276X-9-189.   DOI
32 Peng Liu, Wei Qi, YaoFang Du, Zhan Li, Jing Wang, JuanJuan Bi, WangSuo Wu, Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes, Sci. China Chem. 57 (11) (2014) 1483-1490, https://doi.org/10.1007/s11426-014-5204-x.   DOI
33 Guojian Duan, Qiangqiang Zhong, Lei Bi, Liu Yang, Tonghuan Liu, Xiaoning Shi, Wangsuo Wu, The poly(acrylonitrule-co-acrylic acid)-graft-b-cyclodextrin hydrogel for thorium(IV) adsorption, Polymers 9 (12) (2017) 201, https://doi.org/10.3390/polym9060201.   DOI
34 K.H. Park, D.H. Kwak, Electrosorption and electrochemical properties of activated-carbon sheet electrode for capacitive deionisation, J. Electroanal. Chem. 732 (2014) 66-73, https://doi.org/10.1016/j.jelechem.2014.08.020.   DOI
35 S. Handley-Sidhu, T.K. Mullan, Q. Grail, M. Albadarneh, T. Ohnuki, L.E. MacAskie, Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite, Sci. Rep. (2016) 4-11, https://doi.org/10.1038/srep23361.   DOI
36 D. Das, D.P. Samal, B.C. Meikap, Preparation of activated carbon from green coconut shell and its characterisation, J. Chem. Eng. Process Technol. 6 (5) (2015), https://doi.org/10.4172/2157-7048.1000248.   DOI
37 K.A. Allen, W.J. McDowell, The thorium sulfate complexes from di-ndecylamine sulfate extraction equilibria, J. Phys. Chem. 67 (1963) 1138-1140, https://doi.org/10.1021/j100799a050.   DOI
38 K.L. Yang, T.Y. Ying, S. Yiacoumi, C. Tsouris, E.S. Vittoratos, Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model, Langmuir 17 (6) (2001) 1961-1969, https://doi.org/10.1021/la001527s.   DOI
39 J. Arnold, T.L. Gianetti, Y. Kashtan, Thorium lends a fiery hand, Nat. Chem. 6 (554) (2014), https://doi.org/10.1038/nchem.1952.   DOI
40 X. Zhao, B. Jia, Q. Sun, G. Jiao, L. Liu, D. She, Removal of Cr6+ ions from water by electrosorption on modified activated carbon fibre felt, R. Soc. Open Sci. 5 (180472) (2018), https://doi.org/10.1098/rsos.180472.   DOI
41 Dariush Alipour, Ali Reza Keshtkar, Mohammad Ali Moosavian, Adsorption of thorium(IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: study in single and multi-component systems, Appl. Surf. Sci. (2016), S0169433216000751, https://doi.org/10.1016/j.apsusc.2016.01.049.   DOI
42 D. Liu, K. Huang, L. Xie, H.L. Tang, Relation between operating parameters and desalination performance of capacitive deionisation with activated carbon electrodes, Environ. Sci.: Water Res. Technol. 1 (4) (2015) 516-522, https://doi.org/10.1039/c5-w00102a.   DOI
43 A. Ahmad, S. Pardeep, R. Pankaj, A. Ioannis, S. Selvaraju, L.D. Guilherme, L. Mohammad, I. Andrei, Z.K. George, H.B. Ahmad, Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid, Colloid. Surface. Physicochem. Eng. Aspect. (2020) 8-31, https://doi.org/10.1016/j.colsurfa.2020.125516.   DOI
44 M. Virgen, R.M. Del, O.F.G. Vazquez, V.H. Montoya, R.T. Gomez, Removal of heavy metals using adsorption processes subject to an external magnetic field, in: Heavy Metal IntecOpen Limited: London, United Kingdom, 2018, pp. 253-280, https://doi.org/10.5772/intechopen.74050.   DOI
45 B.W. Jordan, R.G. Eggert, An Assessment of the Costs, Opportunities and Challenges for the Front-End of a Thorium Based Fuel Cycle, Technical Report, Colorado School of Mines, Golden, CO, 2014.
46 IAEA, Management of NORM Residues, 2013. IAEA-TECDOC-1712.
47 IAEA, International Atomic Energy Agency, Handling and Processing of Radioactive Waste from Nuclear Applications, Technical Reports Series No. 402, 2001.
48 E.S. Aziman, A.H.J. Mohd Salehuddin, A.F. Ismail, Remediation of thorium (IV) from wastewater: current status and way forward, Separ. Purif. Rev. (2019), https://doi.org/10.1080/15422119.2019.16395199.   DOI
49 F. Meng, Q. Liu, R. Kim, J. Wang, G. Liu, A. Ghahreman, Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: leaching optimization and kinetic analysis, Hydrometallurgy (2019), 105160, https://doi.org/10.1016/j.hydromet.2019.105160.   DOI