• Title/Summary/Keyword: Recycling material

Search Result 1,148, Processing Time 0.024 seconds

A Study on Evaluation of Field Applicability of Flexible Waterproofing Material with High Adhesion Using Reclaimed Natural Latex (천연 라텍스 재생고무를 활용한 고점착형 시트 방수재의 현장 적용성 평가 연구)

  • Oh, Sangkeun;Jo, Ilkyu;Kim, Jinsung;Kim, Dongbum;Lee, Jongyong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • This study has been conducted in order to propose Eco-friendly and High functional waterproofing technology available for structure by verifying application and performance of water proofing material(s) in purpose of making effective use of reclaimed rubber. As s result of 12 months evaluation, stable performance for water pressure and lateral pressure of $0.3N/mm^2$ were confirmed. Also, as the time elapsed, the amount of water absorption and adhesion performance showed only a slight difference(+0.05g, $-0.1Nmm^2$) as well, which in turn confirmed that waterproofing performance remains stable. Studies show that it is expected to expand recycling technology of natural rubber by applying reclaimed rubber on construction waterproofing field, and to hold a technical superiority by using eco-friendly material in construction waterproofing market throughout active application of these types of research.

  • PDF

A Study on Organic-Inorganic Hybrid Sound Absorbing Materials Using by Recycling Gypsum (재활용 석고 부산물을 이용한 유무기 하이브리드 흡음재 개발 연구)

  • Shin, Hyun-Gyoo;Jeon, Bo-Ram;Ha, Joo-Yeon;Jeon, Chan-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.481-487
    • /
    • 2017
  • The purpose of this study is to develop the hybrid sound-absorbing materials that is made from organic polyurethane sponge impregnated with inorganic binder solutions. The inorganic slurry which is made from ${\alpha}$-hemihydrate gypsum mixed with 60% water, and various additives including plasticizer are used as binder. The test specimens are prepared and tested for sound absorption performance by the impedance tube methods. From the test results, noise reduction coefficient(NRC) of development materials specimen bound by the inorganic binder slurry is 0.41. They are 2 times or more higher than commercial products specimens bound by organic materials only which have NRC values in the range of 0.14 to 0.28. The polyurethane sponge specimens impregnated with inorganic gypsum slurry binder have a good balance between performance and cost, and have proper properties in density, thermal conductivity, non-combustible, and absence of harmful substances as sound-absorbing internal boards for noise barrier wall. It is apparent that the good sound absorption materials can be produced according to the optimum mix design that is recommended from this study.

A Study of Expectation Effective Analysis According to Improvement in Quality of the Paper Packaging Material and Structure -Focusing on EPR Items- (종이팩의 재질구조 개선에 따른 기대효과 분석에 관한 연구 -EPR 대상 품목을 중심으로-)

  • Ko, Euisuk;Song, Kihyeon;Cho, Suhyun;Shim, Woncheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • As the foods and household manufacturing technology is developed, the packaging method of products is being changed from single to multi materials and layers. This study were focused on EPR carton packaging, economic and environmental expected effects were predicted by the improvements of packaging materials and structures to reduce effective packaging waste. Especially expected effects were predicted when improving the structure and material of aluminum laminated material was difficult to recycle. Thus, it was assumed the aseptic carton packaging laminated aluminum were replaced with silica laminated films. In conclusion, analysis of economic expected effects were undervalued in this study because of the limitation of assumptions, though this study has significance about a new approach by calculating the data different from the past that the conventional methods like predictive value of government's guidelines or goals.

Effect of Hot Pressing/Melt Mixing on the Properties of Thermoplastic Polyurethane

  • Lee, Young-Hee;Kang, Bo-Kyung;Kim, Han-Do;Yoo, Hye-Jin;Kim, Jung-Soo;Huh, Jae-Ho;Jung, Young-Jin;Lee, Dong-Jin
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.616-622
    • /
    • 2009
  • In-depth understanding of the influence of hot pressing and melt processing on the properties of thermoplastic polyurethane (TPU) is critical for effective mechanical recycling of TPU scraps. Therefore, this study focused on the effects of hot pressing and melt mixing on molecular weight (MW), polydispersity index (PDI), melt index (MI), characteristic IR peaks, hardness, thermal degradation and mechanical properties of TPU. The original TPU pellet (o-TPU) showed two broad peaks at lower and higher MW regions. However, four TPU film samples, TPU-0 prepared only by hot pressing of o-TPU pellet and TPU-1, TPU-2 and TPU-3 obtained by hot pressing of melt mixed TPUs (where the numbers indicate the run number of melt mixing), exhibited only a single peak at higher MW region. The TPU-0 film sample had the highest $M_n$ and the lowest PDI and hardness. The TPU-1 film sample had the highest $M_w$ and tensile modulus. As the run number of melt mixing increased, the peak-intensity of hydrogen bonded C=O stretching increased, however, the free C=O peak intensity, tensile strength/elongation at break and average MW decreased. All the samples showed two stage degradations. The degradation temperatures of TPU-0 sample (359 $^{\circ}C$ and 394 $^{\circ}C$)were higher than those of o-TPU (342 $^{\circ}C$ and 391 $^{\circ}C$). While all the melt mixed samples degraded at almost the same temperature (365 $^{\circ}C$ and 381 $^{\circ}C$). The first round of hot pressing and melt mixing was found to be the critical condition which led to the significant changes of $M_n$/$M_w$/PDI, MI, mechanical property and thermal degradation of TPU.

Properties of Low Carbon Type Hydraulic Cement Binder Using Waste Recycle Powder (무기계 재생원료를 사용한 저탄소형 수경성 시멘트 결합재의 특성)

  • Song, Hun;Shin, Hyeon-Uk;Tae, Sung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • Cement is a basic material for the construction industry and it requires high temperature sintering when manufacturing cement. $CO_2$ emissions from raw materials and fuels are recognized as new environmental problems and efforts are underway to reduce them. Techniques for reducing $CO_2$ in concrete are also recommended to use blended cement such as blast furnace slag or fly ash. In addition, the construction waste generated in the dismantling of concrete structures is recognized as another environmental problem. Thus, various methods are being implemented to increase the recycling rate. The purpose of this study is to utilize the inorganic raw materials generated during the dismantling of the structure as a raw material for the low carbon type cement binder. Such as, waste concrete powder, waste cement block, waste clay brick and waste textile as raw materials for low carbon type cement binder. From the research results, low carbon type cement binder was manufactured from the raw material composition of waste concrete powder, waste cement block, waste clay brick and waste textile.

Effect of Nitrogen Plasma Surface Treatment of Rice Husk-Based Activated Carbon on Electric Double-Layer Capacitor Performance (질소 플라즈마 표면처리가 쌀겨 기반 활성탄소의 전기 이중층 커패시터 성능에 미치는 영향)

  • Lee, Raneun;Kwak, Cheol Hwan;Lee, Hyeryeon;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.71-77
    • /
    • 2022
  • To increase biomass utilization, rice husk-based activated carbon (RHAC) followed by nitrogen plasma surface treatment was prepared and the electric double-layer capacitor performance was investigated. Through nitrogen plasma surface treatment, up to 2.17% of nitrogen was introduced to the surface of RHAC, and in particular the sample reacted for 5 min with nitrogen plasma showed dominant formation of pyrrolic/pyridine N functional groups. In addition, mesopores were formed on the RHAC material by the removal of silica, and the surface roughness of the carbon material increased by nitrogen plasma surface treatment, resulting in the formation of many micropores. As a result of cyclic voltammetry measurement, at a scan rate of 5 mV/s, the specific capacitance of the RHAC treated with nitrogen plasma increased up to 200 F/g, showing an 80.2% improvement compared to that of using untreated RHAC (111 F/g). This is attributed to the synergetic effect of the introduction of pyrrolic/pyridine-based nitrogen functional groups and the increase of the micropore volume on the surface of the carbon material. This study has a positive effect on the environment in terms of recycling waste resources and using plasma surface treatment.

Electrochemical Properties and Adsorption Performance of Carbon Materials Derived from Coffee Grounds (커피찌꺼기로부터 얻어진 탄소 소재의 전기화학적 성질 및 흡착 성능)

  • Jin Ju Yoo;Nayeon Ko;Su Hyun Oh;Jeongyeon Oh;Mijung Kim;Jaeeun Lee;Taeshik Earmme;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-533
    • /
    • 2023
  • The fundamental electrochemical properties and adsorption capabilities of the carbonized product derived from coffee grounds, a prevalent form of lignocellulose abundantly generated in our daily lives, have been extensively investigated. The structure and morphology of the resultant carbonized product, obtained through a carbonization process conducted at a relatively low temperature of 600 ℃, were meticulously examined using a scanning electron microscope. Raman spectroscopy measurements yielded a relative crystallinity (D/G ratio) of the carbon product of 0.64. Electrical measurements revealed a linear ohmic relationship within the carbonized product. Furthermore, the viability of utilizing this carbonized material as an anode in lithium-ion batteries was evaluated through half-cell charge/discharge experiments, demonstrating an initial specific capacity of 520 mAh/g. Additionally, the adsorption performance of the carbon material towards a representative dye molecule was assessed via UV spectroscopy analyses. Supplementary experiments corroborated the material's ability to adsorb a distinct model molecule characterized by differing surface polarity, achieved through surface modification. This article presents pivotal findings that hold substantial implications for forthcoming research endeavors centered around the recycling of lignocellulose waste.

A Study on Characteristics of Self-weight Consolidation of Bottom Ash Mixed Soil (Bottom Ash 혼합토의 자중압밀 특성 연구)

  • Yoon, Won-Sub;Shin, Seung-Gu;Chae, Young-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.59-77
    • /
    • 2015
  • In order to meet the new requirements for landfill materials, this study planned a study to apply mixed soil of mixing bottom ash and coastal dredged soil to the dredged ground. Coal ash generated from thermal power plant is divided into fly ash and bottom ash. In the case of fly ash, many studies have been conducted because small particles causes permeability coefficient to be small during recycling so no problem has been raised in the environmental area but the utilization of bottom ash has been limited because environmental problems have been raised during recycling due to its larger particle size and greater permeability coefficient. According to recently published studies, however, the results of the study that conducted the water analysis of leachate generated in the ground improvement section using bottom ash showed that heavy metal contamination levels were found to be within the reference value and no significant environmental problems were found so utilization of bottom ash is evaluated to increase significantly in the future. This bottom ash has the particle size of sand and only transportation costs need to be considered when providing materials because the majority has been disposed and it is judged as the most suitable material in dredging landfill in the economic aspect because most thermal power plants are located in the coast and transportation costs can be reduced by ship. Also, research on mixed soil that can maximize the effect of the construction period and construction cost savings than dredged soil is determined as needed because the demand for coastal dredging reclamation is increasing such as Saemangeum project etc. Therefore, we studied self-weight consolidation characteristics depending on sample processing and mixing method of mixed soil by carrying out interior self-weight consolidation experiments on mixed soil of mixing bottom ash and Kaolinite according to the new development needs of recent coastal reclaimed ground and these result findings are expected to be used as basic data when applying the large coastal dredged ground in the future.

Analysis of Drying Efficiency for Circulating and Falling Movements on Indirected Drying Process of Food Waste (음식물류폐기물 간접건조과정에서의 순환 및 낙하이동에 따른 건조효율 평가)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.106-117
    • /
    • 2012
  • Indirected heating dryer is used as one of the food waste treatment technologies for the production of the drier material supplied to the recycling facilities or end user. This study investigated the effect on drying efficiency for the operation of rotating screw with the circulating and falling movements on indirected drying process of food waste. The screw operating condition showed higher drying efficiency despite of the shorter drying time compared to the screw non-operating condition. The moisture content decreased to 14.4% from the initial moisture content of 77.1% after drying 5 hours in the screw operating condition. On the other hand, in the screw non-operating condition, the moisture content decreased slightly to 35.6% after drying 16 hours. During the drying process, variations of the water evaporation rate and particle size showed different tendencies depending on the moisture content regions. In the higher moisture content region above the glue zone(moisture content of about 50%-60%), the particle size increased and the water evaporation rate reached the highest peak. In the range of glue zone, the particle size maximized while the water evaporation rate decreased sharply. In the lower moisture content region below the glue zone, the water evaporation rate and particle size both decreased at the same time. The particle size distribution was widely ranged from 25.0mm to 0.25mm in the screw operating condition while it was narrowly distributed in the screw non-operating condition from 25.0mm to 3.56mm, especially highly concentrated to 25.0mm. It was regarded that the hygroscopic, capillary and gravitational water evaporated more easily from the intra-particle during the circulating and falling movement caused by the rotating of the screw and the difference of the cohesional force of water within intra-particle depending on the moisture content regions. Comparing the effect of the circulating and falling movement on drying efficiency, the water evaporation rates per time and per weight of dry solid in the screw operating condition were higher about 364% and 356%, respectively, than those of the screw non-operating condition.

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.