DOI QR코드

DOI QR Code

A Study on Organic-Inorganic Hybrid Sound Absorbing Materials Using by Recycling Gypsum

재활용 석고 부산물을 이용한 유무기 하이브리드 흡음재 개발 연구

  • Shin, Hyun-Gyoo (Material Technology Center, Korea Testing Laboratory) ;
  • Jeon, Bo-Ram (Material Technology Center, Korea Testing Laboratory) ;
  • Ha, Joo-Yeon (Material Technology Center, Korea Testing Laboratory) ;
  • Jeon, Chan-Soo (Building and Urban Research Institute, Korea Institute of Civil Engineering Technology)
  • 신현규 (한국산업기술시험원 재료기술센터) ;
  • 전보람 (한국산업기술시험원 재료기술센터) ;
  • 하주연 (한국산업기술시험원 재료기술센터) ;
  • 전찬수 (한국건설기술연구원 건축도시연구소)
  • Received : 2017.10.27
  • Accepted : 2017.12.19
  • Published : 2017.12.30

Abstract

The purpose of this study is to develop the hybrid sound-absorbing materials that is made from organic polyurethane sponge impregnated with inorganic binder solutions. The inorganic slurry which is made from ${\alpha}$-hemihydrate gypsum mixed with 60% water, and various additives including plasticizer are used as binder. The test specimens are prepared and tested for sound absorption performance by the impedance tube methods. From the test results, noise reduction coefficient(NRC) of development materials specimen bound by the inorganic binder slurry is 0.41. They are 2 times or more higher than commercial products specimens bound by organic materials only which have NRC values in the range of 0.14 to 0.28. The polyurethane sponge specimens impregnated with inorganic gypsum slurry binder have a good balance between performance and cost, and have proper properties in density, thermal conductivity, non-combustible, and absence of harmful substances as sound-absorbing internal boards for noise barrier wall. It is apparent that the good sound absorption materials can be produced according to the optimum mix design that is recommended from this study.

본 연구에서는 유기계 소재의 폴리우레탄 스펀지를 무기계 바인더 용액에 함침시킴으로써 유무기 하이브리드 구조의 흡음재를 개발하였다. 무기계 바인더 용액은 ${\alpha}$형 반수석고에 60%의 물과 경화 지연제, 유동화제, 아크릴 수지 등의 혼화 재료를 첨가하여 슬러리 용액으로 제조하였으며, 무기계 바인더 용액에 함침시킨 유기계 스펀지를 함침, 가압탈수, 건조시킴으로서 특성평가용 시료를 제작하였다. 개발 시료의 흡음률을 임피던스 관내법을 이용하여 시험 평가한 결과, NRC 흡음계수 값은 0.41로 기존에 시판되고 있는 흡음재들과 비교하여 2배 이상으로 우수한 흡음성능을 나타냈으며, 불연성능 시험평가 결과 준불연재료(2급) 기준을 만족함을 확인하였다. 또한 건축 내장재로서의 기초 시험평가 및 EL248. 규격에 따른 유해성분 시험평가를 통해 본 연구에서 개발한 유무기 하이브리드 소재가 흡음재뿐만 아니라 단열 및 보온재로서의 역할이 가능하며, 유해성 기준을 만족하는 친환경 건축소재로 활용 가능함을 확인하였다.

Keywords

References

  1. Allard, J., Atalla, N. (2009). Propagation of Sound in PorousMedia: Modelling Sound Absorbing Materials, John Wiley &Sons, 2nd Ed., UK
  2. Christensen, J., Romero-Garcia, V., Pico, R., Cebrecos, A., Garcia de Abajo, F.J., Mortensen, N.A., Willatzen, M.,Sanchez-Morcillo, V.J. (2014). Extraordinary Absorption ofSound in Porous Lamella-crystals, Scientific Reports, 4, 4674.
  3. Cox, T.J., D'Antonio, P. (2009). Acoustic Absorbers and Diffusers:Theory, Design, and Application, CRC Press, 2nd Ed., USA
  4. Groby, J.P., Wirgin, A., De Ryck, L., Lauriks, W., Gilbert, R.P., Xu, Y.S. (2009). Acoustic response of a rigid-frameporous medium plate with a periodic set of inclusions,Journal of Acoustical Society of America, 126(2), 685-693. https://doi.org/10.1121/1.3158936
  5. Groby, J.P., Dazel, O., Duclos, A., Boeckx, L., Kelders, L. (2011). Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions, Journal of Acoustical Society of America, 130(6), 3771-3780. https://doi.org/10.1121/1.3652865
  6. Jung, S.S., Hwang, C.H. (1996). A study on the acoustical characteristics of the absorbent materials using two microphones, Transactions of the Korean Society for Noise and Vibration Engineering, 6(2), 225-232 [in Korean].
  7. Lagarrigue, C., Groby, J.P., Tournat, V., Dazel, O., Umnova, O. (2013). Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions, Journal of Acoustical Society of America, 134(6), 4670-4680. https://doi.org/10.1121/1.4824843
  8. Lee, J.S., Kim, E.I., Kim, Y.Y., Kim, J.S., Kang, Y.J. (2007). Optimal poroelastic layer sequencing for sound transmission loss maximization by topology optimization method, Journal of Acoustical Society of America, 122(4), 2097-2106. https://doi.org/10.1121/1.2770541
  9. Lee, J.S., Kim, Y.Y., Kim, J.S., Kang, Y.J. (2008). Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method, Journal of Acoustical Society of America, 123(4), 2094-2106. https://doi.org/10.1121/1.2839001
  10. Li, J., Fok, L., Yin, X., Bartal, G., Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens, Nature Materials, 8(12), 931-934. https://doi.org/10.1038/nmat2561
  11. Tanneau, O., Casimir, J. B., Lamary, P. (2006). Optimization of multilayered panels with poroelastic components for an acoustical transmission objective, Journal of Acoustical Society of America, 120(3), 1227-1238. https://doi.org/10.1121/1.2228663
  12. Yang, J., Lee, J.S., Kim, Y.Y. (2015). Metaporous layer to overcome the thickness constraint for broadband sound absorption, Journal of Applied Physics, 117(17), 174903. https://doi.org/10.1063/1.4919844