• Title/Summary/Keyword: Recycled aggregate

Search Result 924, Processing Time 0.031 seconds

A Study of the Strength and Durability Properties on Recycled Aggregate Concrete and Blain of Blast Furnace Slag (고로슬래그의 분말도 및 순환골재 치환율에 따른 콘크리트의 강도 및 내구적 특성에 관한 연구)

  • Lim, Myung-Kwan;Park, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.101-108
    • /
    • 2007
  • Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properties such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical resistance. However, furnace slag powder is not self -hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcium hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate concrete using furnace slag and analyze its performance based on the results of an experiment, to provide materials on concrete using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.

Influence of high temperature on mechanical properties of concrete containing recycled fine aggregate

  • Liang, Jiong-Feng;Wang, En;Zhou, Xu;Le, Qiao-Li
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.87-94
    • /
    • 2018
  • This paper presents the results of an experimental study to investigate the influences of high temperatures on the mechanical properties of concrete containing recycled fine aggregate. A total of 150 concrete prisms ($100{\times}100{\times}300mm$) and 150 concrete cubes ($100{\times}100{\times}100mm$) are cast and heated under five different temperatures ($20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$) for test. The results show that the mass loss, compressive strength, elastic modulus, splitting tensile strength of concrete specimens containing recycled fine aggregate decline significantly as the temperature rise. At the same temperature, the compressive strength, splitting tensile strength, elastic modulus of concrete specimens containing recycled coarse aggregate and recycled fine aggregate (RHC) is lower than that of concrete specimens containing natural coarse aggregate and recycled fine aggregate (RFC). The shape of stress-strain curves of concrete specimens at different temperatures is different, and the shape of that become flatter as the temperature rises. Normal concrete has better energy absorption capacity than concrete containing recycled fine aggregate.

A Study on the Structural Characteristic of Recycled Aggregate Concrete Reinforced Steel Fiber (강섬유 혼입 순환골재 콘크리트의 구조적 특성에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Park, Young-Bai;Kim, Jeong-Hoon;Cho, Chang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.35-42
    • /
    • 2008
  • In this study, a sample was fabricated according to the recycled aggregate replacement level(0%, 30%, 60%), and the steel fiber mixing status in order to use recycled aggregate as a concrete alternative coarse aggregate, and then the materials and structural characteristics of recycled aggregate and steel fiber which impacted the reinforced concrete were analyzed. A conclusion was derived as follows. After considering the results of various material experiments and mock-up test, when a flexural strength and a ductility factor is increased and the replacement level is increased through mixing the steel fiber with the recycled aggregate concrete, the ductility and flexural strength reduction seems to be inhibited by adding the steel fiber. Also, it is indicated that the recycled aggregate has almost-similar compressive strength, tensile strength flexural strength and ductility capacity to the concrete which using the general gone even though the steel fiber is used and the replacement level is increased to 30%. Accordingly, the reinforced concrete frame using the steel fiber mixture and recycled aggregate seems to apply to the actual structure.

Physical and Mechanical Properties of Recycled Polymer Concrete (재생 폴리머 콘크리트의 물리.역학적 특성)

  • Baek, Seung-Chul;Kim, Young-Ik;Sung, Chan-Yong;Choi, Sang-Leung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.411-414
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of recycled polymer concrete using recycled coarse aggregate and recycled fine aggregate. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate and recycled fine aggregate are performed. As a result, compressive strength, flexural strength and pulse velocity of polymer concrete containing recycled coarse aggregate are in the range of $826{\sim}849kgf/cm^2,\;192{\sim}200kgf/cm^2\;and\;3,932{\sim}4,000m/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $805kgf/cm^2,\;197kgf/cm^2$ and 3,931 m/s, respectively. Accordingly, recycled aggregates is expected that can be utilizing as an aggregate of polymer concrete.

  • PDF

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Recycling demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help solve the growing waste disposal crisis and the problem of depleted natural aggregates. The purpose of this study is to investigate chloride migration of recycled aggregate concrete containing pozzolanic materials by chloride migration coefficient. The specimens were made with recycled coarse aggregate as various replacement ratio(10, 30, 50%) and metakaolin, blast furnace slag, fly ash is replaced for recycled concrete with mixing ratio 20%. The major results are as follows. 1) Compressive strength of recycled aggregate concrete containing pozzolanic materials increase as curing age and chloride migration decrease. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag, metakaolin shows the similar or lower value than plain concrete at all ages.

  • PDF

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.

An Experimental Study on the Strength of Recycled Concrete with Steam Curing (증기양생 재생콘크리트의 강도특성에 관한 실험연구)

  • Lee, Myung-Kue;Kim, Kwang-Seo;Lee, Keun-Ho;Jung, Sang-Hwa
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.89-95
    • /
    • 2005
  • Various tests are performed with the recycled concrete including compressive strength, flexural strength, splitting tensile strength, bonding strength and chloride ion penetration test. The basic data obtained from the presented test could be accumulated for the purpose of utilization in concrete structure. Most of the strength tests show that strength decrease a little extent with increasing substitution ratio of recycled coarse aggregate except splitting tensile test for the concrete with $100\%$ recycled fine aggregate. But in case of the $50\%$ substitution of recycled coarse aggregate, compressive strength, flexural strength and bonding strength are almost equal to the normal concrete. Chloride ion penetration test shows that the penetration amounts of chloride ion becomes more in proportion to the substitution ratio of recycled aggregate. But most of the results show that the permeability of recycled concrete is proper to use. The results of present study nay imply that the use of recycled aggregate for steam curing concrete is possible but the substitution ratio of recycled aggregate should be determined through further studies.

The Effect of Replacement Level of Recycled Aggregate on the Properties of High-Performance Concrete (고성능 콘크리트의 특성에 미치는 재생골재 치환율의 영향)

  • Yang Keun-Hyeok;Kim Yong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.181-184
    • /
    • 2004
  • The objective of this experimental study is to grasp the effect of replacement level of high-quality recycled aggregate on the properties of high-performance concrete. The mixing types were divided into two series based on containing $0\%\;and\;15\%$ fly-ash. Replacement level of recycled aggregate ranged from $0\%\;to\;100\%$. Test results showed that the initial slump and the fluid velocity were independent on the replacement level of recycled aggregate, and the loss of compressive strength was almost $20\%$ with the recycled aggregate only.

  • PDF

A Study on the Characteristics of Recycled Aggregate Concrete According to the Mixing Ratio of Recycled Fine Aggregate at Specific Concrete Strengths (설계기준강도별 순환 잔골재 혼합비율에 따른 순환골재 콘크리트 특성에 관한 연구)

  • Sang-Hyuck, Yoon;Sea-Hyun, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.367-375
    • /
    • 2022
  • In this study, the characteristics of recycled aggregate concrete according to the mixing ratio of recycled fine aggregate were analyzed by design strength to explore its use in the production of ready-mixed concrete. The results show that, depending on the ratio of recycled aggregate, the compressive strength is similar to that of normal concrete and does not deteriorate. Therefore, it is possible to achieve a strength similar to the target design strength. Furthermore, if the ratio of recycled fine aggregate for concrete is up to 25 % of the total aggregate amount (50 % of the to-tal fine aggregate), slump does not cause problems. Our findings show that the higher the de-sign standard strength, the greater the amount of powder, and management of slump reduction, unit quantity, and performance system is necessary. The obtained results show that recycled ag-gregate can be used for the production of ready-mixed concrete after adjusting its mixing ratio and concrete mix proportions.

Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios (순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성)

  • Sim, Jongsung;Park, Cheolwoo;Park, Sung Jae;Kim, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.213-218
    • /
    • 2006
  • As a manufacturing process of recycled aggregate improves the quality of recycled aggregate shall be sufficient enough to be used for structural concrete. This study characterized compressive strength and elastic modulus of concrete that used recycled coarse and fine aggregate. Before the strength tests, the fundamental characteristics of recycled aggregate were preliminarily analyzed and the recycled aggregate satisfied the class 1 requirements in KS F 2573. As the replacement ratio increased, the compressive strength and elastic modulus of recycled aggregate concrete decreased. When the coarse and fine aggregates were completely replaced with the recycled, the compressive strength and elastic modulus were decreased by 13% and 31%, respectively. Based on the test results, this study suggests equations for predicting the compressive strength and elastic modulus of the recycled aggregate concrete with respect to the replacement ratio. The values from the equations were in good agreement with the test data from this study and others.