• Title/Summary/Keyword: Recursive least-square algorithm

Search Result 170, Processing Time 0.023 seconds

A Study on the Camera Calibration Algorithm of Robot Vision Using Cartesian Coordinates

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.98-104
    • /
    • 2002
  • In this study, we have developed an algorithm by attaching a camera at the end-effector of industrial six-axis robot in order to determine position and orientation of the camera system from cartesian coordinates. Cartesian coordinate as a starting point to evaluate for suggested algorithm, it was easy to confront increase of orientation vector for a linear line point that connects two points from coordinate space applied by recursive least square method which includes previous data result and new data result according to increase of image point. Therefore, when the camera attached to the end-effector has been applied to production location, with a calibration mask that has more than eight points arranged, this simulation approved that it is possible to determine position and orientation of cartesian coordinates of camera system even without a special measuring equipment.

On the Complex-Valued Recursive Least Squares Escalator Algorithm with Reduced Computational Complexity

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.521-526
    • /
    • 2009
  • In this paper, a complex-valued recursive least squares escalator filter algorithm with reduced computational complexity for complex-valued signal processing applications is presented. The local tap weight of RLS-ESC algorithm is updated by incrementing its old value by an amount equal to the local estimation error times the local gain scalar, and for the gain scalar, the local input autocorrelation is calculated at the previous time. By deriving a new gain scalar that can be calculated by using the current local input autocorrelation, reduced computational complexity is accomplished. Compared with the computational complexity of the complex-valued version of RLS-ESC algorithm, the computational complexity of the proposed method can be reduced by 50% without performance degradation. The reduced computational complexity of the proposed algorithm is even less than that of the LMS-ESC. Simulation results for complex channel equalization in 64QAM modulation schemes demonstrate that the proposed algorithm has superior convergence and constellation performance.

External Force Estimation by Modifying RLS using Joint Torque Sensor for Peg-in-Hole Assembly Operation (수정된 RLS 기반으로 관절 토크 센서를 이용한 로봇에 가해진 외부 힘 예측 및 펙인홀 작업 구현)

  • Jeong, Yoo-Seok;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In this paper, a method for estimation of external force on an end-effector using joint torque sensor is proposed. The method is based on portion of measure torque caused by external force. Due to noise in the torque measurement data from the torque sensor, a recursive least-square estimation algorithm is used to ensure a smoother estimation of the external force data. However it is inevitable to create a delay for the sensor to detect the external force. In order to reduce the delay, modified recursive least-square is proposed. The performance of the proposed estimation method is evaluated in an experiment on a developed six-degree-of-freedom robot. By using NI DAQ device and Labview, the robot control, data acquisition and The experimental results output are processed in real time. By using proposed modified RLS, the delay to estimate the external force with the RLS is reduced by 54.9%. As an experimental result, the difference of the actual external force and the estimated external force is 4.11% with an included angle of $5.04^{\circ}$ while in dynamic state. This result shows that this method allows joint torque sensors to be used instead of commonly used external sensory system such as F/T sensors.

Inertia and Coefficient of Friction Estimation of Electric Motor using Recursive Least-Mean-Square Method (순환 최소자승법을 이용한 전동기 관성과 마찰계수 추정)

  • Kim, Ji-Hye;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.311-316
    • /
    • 2007
  • This paper proposes the algorithm which estimates moment of the inertia and friction coefficient of friction for high performance speed control of electric motor. The proposed algorithm finds the moment of inertia and friction coefficient of friction by observing the speed error signal generated by the speed observer and using Recursive Least-Mean-Square method(RLS). By feedbacking the estimated inertia and estimated coefficient of friction to speed controller and full order speed observer, then the errors of the inertia and coefficient of friction and speed due to the inaccurate initial value are decreased. Inertia and coefficient of friction converge to the actual value within several times of speed changing. Simulation and actual experiment results are given to demonstrate the effectiveness of the proposed parameter estimator.

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

  • Lee, Ming-Hui;Chen, Tsung-Chien
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in the input force estimation cases of the plate structure system. The proposed algorithm is further compared by alternating between the constant and adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target tracking capability, and more effective noise and measurement bias reduction.

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF

A study on the parameter estimate using selective recursive least square (SRLS을 이용한 파라미터 추정에 관한 연구)

  • 유치형;이재하;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.441-444
    • /
    • 1989
  • This correspondence presents a recursive estimation algorithm which, unlike conventional ones; updates the estimates only when a sufficient improvement can be obtained with a bounded noise assumption, the resulting sequence of estimates is a sequence of convex sets(ellipsoids) in the parameter space. For the cases studied, the algorithm use less than 20 percent of the. data to update, the estimate and still acquired good accuracy for spectral estimation.

  • PDF

Capacitive Parameter Estimation of Passive Telemetry RF Sensor System Using RLS Algorithm (RLS 알고리즘을 이용한 원격 RF 센서 시스템의 정전용량 파라메타 추정)

  • Kim, Kyung-Yup;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.858-865
    • /
    • 2008
  • In this paper, Capacitive Telemetry RF Sensor System using Recursive Least Square (RLS) algorithm was proposed. General Telemetry RF Sensor System means that it should be "wireless", "implantable" and "batterless". Conventional Telemetry RF Sensor System adopts Integrated Circuit type, but there are many defects like complexity of structure and the limitation of large power consumption in some cases. In order to overcome these disadvantages, Telemetry RF Sensor System based on inductive coupling principle was proposed in this paper. Proposed Telemetry RF Sensor System is very simple because it consists of R, L and C and measures the changes of environment like pressure and humidity in the type of capacitive value. This system adopted RLS algorithm for estimation of this capacitive parameter. For the purpose of applying RLS algorithm, proposed system was mathematically modelled with phasor method and was quasi-linearized. As two parameters such as phase and amplitude of output voltage for estimation were needed, Phase Difference Detector and Amplitude Detector were proposed respectively which were implemented using TMS320C2812 made by Texas Instrument. Finally, It is verified that the capacitance of proposed telemetry RF Sensor System using RLS algorithm can be estimated efficiently under noisy environment.

Convergence Characteristics of Compensation Algorithm in Frequency Selective Fading Channel (주파수 선택성 페이딩 채널에서 보상 알고리즘의 수렴특성)

  • Lee, Seung-Dae
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.4
    • /
    • pp.263-268
    • /
    • 2007
  • It applied the linear tapped delay line structure to the least mean square algorithm and the recursive least square algorithm it investigated the mean square error characteristics of compensation algorithm. The purpose of this paper is to propose multi-tap update algorithm, which is superior to compensation capacity of data, and then compare and analyze it from the perspective of convergence characteristics at time invariant transmission channel and frequency selective fading channel.

  • PDF

Comparison Study of Channel Estimation Algorithm for 4S Maritime Communications (4S 해상 통신을 위한 채널 추정 알고리즘 비교 연구)

  • Choi, Myeong Soo;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.288-295
    • /
    • 2013
  • In this paper, we compare the existing channel estimation technique for 4S (Ship to Ship, Ship to Shore) maritime communications under AWGN channel model, Rician fading channel model, and Rayleigh fading channel model respectively. In general, the received signal is corrupted by multipath and ISI (Inter Symbol Interference). The estimation of a time-varying multipath fading channel is a difficult task for the receiver. Its performance can be improved if an appropriate channel estimation filter is used. The simulation is performed in MATLAB. In this simulation, we use the popular estimation algorithms, LMS (Least Mean Square) and RLS (Recursive Least-Squares) are compared with respect to AWGN, Rician and Rayleigh channels.