• Title/Summary/Keyword: Recursive Instrumental-variable Method

Search Result 7, Processing Time 0.018 seconds

A New Estimator for Seasonal Autoregressive Process

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • For estimating parameters of possibly nonlinear and/or non-stationary seasonal autoregressive(AR) processes, we introduce a new instrumental variable method which use the direction vector of the regressors in the same period as an instrument. On the basis of the new estimator, we propose new seasonal random walk tests whose limiting null distributions are standard normal regardless of the period of seasonality and types of mean adjustments. Monte-Carlo simulation shows that he powers of he proposed tests are better than those of the tests based on ordinary least squares estimator(OLSE).

  • PDF

A Recursive Estimation Algorithm for FIR System Using Higher Order Cumulants (고차 큐뮬런트를 이용한 FIR 시스템의 회귀 추정 알고리듬)

  • Kim, Hyoung-Ill;Yang, Tae-Won;Jeon, Bum-Ki;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.81-85
    • /
    • 1997
  • In this paper, a recursive estimation algorithm for FIR systems is proposed using the 3rd and 4th order cumulants. To obtain the Overdetermined Recursive Instrumental Variable(ORIV) method type algorithm, we transform the 3'th and 4'th order cumulant relationship to a certain matrix form which is consist of only output data. From the matrix form, we induce the proposed algorithm procedure following the ORIV method. The proposed algorithm provides improved estimation accuracy with smaller data and can be applied to a time varying system as well. In addition, it reduces the estimation error due to the additive Gaussian noise compared to conventional 2'rd order based algorithms since it only uses higher than 2'rd order cumulant. Simulation results are presented to compare the performance with other HOS-based algorithms.

  • PDF

Temperature Control of Electric Furnaces using Adaptive Time Optimal Control (적응최적시간제어를 사용한 전기로의 온도제어)

  • Jeon, Bong-Keun;Song, Chang-Seop;Keum, Young-Tag
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.

Recursive State Space Model Identification Algorithms Using Subspace Extraction via Schur Complement

  • Takei, Yoshinori;Imai, Jun;Wada, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.525-525
    • /
    • 2000
  • In this paper, we present recursive algorithms for state space model identification using subspace extraction via Schur complement. It is shown that an estimate of the extended observability matrix can be obtained by subspace extraction via Schur complement. A relationship between the least squares residual and the Schur complement matrix obtained from input-output data is shown, and the recursive algorithms for the subspace-based state-space model identification (4SID) methods are developed. We also proposed the above algorithm for an instrumental variable (IV) based 4SID method. Finally, a numerical example of the application of the algorithms is illustrated.

  • PDF

ANALYSIS AND PAEAMETER ESTIMATION OF LINEAR CONTINUOUS STSTEMS USING LINEAR INTEGRAL FILLTER

  • Sagara, Setsuo;Zhao, Zhen-Yu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1045-1050
    • /
    • 1988
  • The problem of applying the linear integral filter in analysis and parameter estimation of linear continuous systems is discussed. A discrete-time model, which is equivalent to that obtained using the bilinear z transformation, is derived and employed to predict system output. It is shown that the output error can be controlled through the sampling interval. In order to obtain unbiased estimates, an instrumental variable (IV) method is proposed, where the instrumental variables are constituted using adaptive filtering. Some problems on implementation of the recursive IV algorithm are discussed. Both theoretical analysis and simulation study are given to illustrate the proposed methods.

  • PDF

An Analysis on the Tooth Passing Frequency using End-milling Force (엔드밀 가공시 절삭력을 이용한 공구날 주파수 분석법)

  • Kim, Jong-Do;Yoon, Moon-Chul;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The mode analysis of end-milling was introduced using recursive parametric modeling. Also, a numerical mode analysis of FRF in end-milling at different conditions was performed systematically. In this regard, a REIVM(recursive extended instrumental variable method) modeling algorithm was adopted and natural modes of real and imaginary part were discussed. This recursive approach can be used for the on-line system identification and monitoring of an end-milling for this purpose. For acquiring a cutting force, an experimental practice was performed. And these end-milling forces were used for the calculation of FRF(Frequency response function) and its mode analysis. Also, the FRF was analysed for the prediction of end-milling system. As a results, this algorithm was successful in each condition for the detection of natural modes of end-milling. After numerical analysis of the FRF, the tooth passing frequency was discriminated in their FRF, power spectrum and mode calculation.

Self-Tuning PID Control of Systems with Time-Varying Delays (시변 지연시간이 존재하는 시스템의 자기동조 PID 제어)

  • 남현도;안동준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 1990
  • In this paper, we propose a self-tuning PID controller for unknown systems with time-varying delay. Using pole placement equations, we derive the controller that can be extended to the multi-step time delay case. The time-varying delays are estimated by a prediction error delay method using multiple predictors. Since the order of the estimation vector is not increased, the persistant exciting condition of control input is alleviated. Since the least square method gives biased parameter estimates for colored noise cases, the recursive instrumental variable method is used to estimate system parameters. The computational burden of the proposed method is less than the conventional adaptive methods. Computer simulations are performed to illustrate the efficiency of the proposed method.

  • PDF