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Abstract: The problem of applying the linear

integral filter in analysis and parameter
estimation of linear continuous systems is
discussed. A discrete-time model, which is

equivalent to that obtained using the bilinear
z transformation, is derived and employed to
predict system output. It is shown that the
output error can be controlled through the
sampling interval. In order to obtain unbiased
estimates, an instrumental variable (IV) method
is proposed, where the instrumental variables
are constituted using adaptive filtering. Some
problems on implementation of the recursive IV
algorithm are discussed. Both theoretical
analysis and simulation study are given to
illustrate the proposed methods.

1. Introduction

This paper treats the analysis and parameter
estimation problems of continuous dynamic
systems. The problems have received
considerable attention in recent years (see eg.
11, [21, [431-[9D. Typical examples are the
methods using orthogonal functions, Poisson
moment functionals and numerical integration.
It is found that the use of numerical
integration has many interesting and attractive
properties such as good accuracy, simplicity
in calculation and convenience for computer
implementation. Therefore, the subject in this
paper will be concentrated on analysis and
parameter estimation of continuous systems
using an operation of numerical integration
named the linear integral filter.

The linear integral filter was first developed
by the authors to solve the initial condition
problem in continuous--time model identification
(CMI) [B]. Since then, it has been successfully
applied in parameter estimation of various
continuous systems in both deterministic and
stochastic situations [63-[8]. In this paper, we
intend to apply it in analysis and parameter
estimation of continuous systems. It will be
shown that the analysis method using the linear
integral filter of trapezoidal rule with I=1
gives satisfactory results in a very simple way.
A bootstrap estimator of instrumental variable
type incorporating adaptive predictor of system
output is then proposed to obtain unbiased
parameter estimates. The convergence property
of the estimator is analysed using the ODE
approach and evaluated by Monte-Carlo
simulation.
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In the following, we consider a continuous SISO

system described by the following linear
differential equation model as
A(s)x(t)=B(s)u(t) (1.1a)
A(s)=s"+as™ e +an (1.1b)

B(s)=bis" e +by,
with the initial conditions given by
wo=(u(0), - u™PONT,  xo=(x(0),.x™V(ONT. (1.2

where u(t) is the input and x(t) is the output;
s is the differential operator, ie.
sx(ty=dx(t)/dt (loosely interpreted here as the
l.aplace operator).

Here we assume that the input and output
signals are sampled with a sampling interval T,
and the sampled output 1is corrupted by a
zero—mean noise wv(k) which is independent of
the input wu{k). The observation equation is
described by

(1.1e)

y(k)=x{k)+vik) (1.3)
where the argument kT has been replaced by k
for convenience. By the principle of

superposition for linear systems,- it can be
assumed that wv(k) represents the combined
effects of all unmeasurable disturbances and
measurement noise affecting the process.

It is also assumed that the system under
consideration is stable, i.e. all roots of A(s)
are in the left-hand side of the s plane, and

the polynomials A(s) and B(s) are relatively
prime,
Then the analysis problem and parameter

estimation problem to be treated here are to
find the values of the system output x(k) at
sampling instants given an 1input sequence
(u{k)} and the known system, and to determine
the values of {a;, bi} with available
measurements {u(k), yk)}, respectively.

The paper is organized as follows. In the next
section, a brief review of the linear integral
filter is given. In section 3, the predictor of
system output, based on a discrete-time model,
is presented. The theoretical analysis on the
output error 1is taken. The procedure of
parameter estimation from available
measurements is illustrated in detail in section
4, where an instrumental variable method using
adaptive filtering is proposed to obtain
unbiased estimates. Some problems on the
implementation of the IV algorithm are also
discussed.



2. Linear Integral Filter

Define a multiple integral of f(I) j times as

t t
o[ [ pway
)

j times j=0,1,,n 2.1
where Iof(t)af(t) and 1| is a factor which
determines the data length of the linear

integral filter. Then the linear integral filter
for handling time derivatives is given by the
following theorem [6], [8]

Theorem 1. Let f@St) be the jth derivative of

fB wrto tand fO(Daft). Then the multiple
integral of fY(t) defined as (2.1) can be
approximately calculated as follows
nl
Inf<”<t>-=.s,f<t>=20pzq*’f<t>
7=0,1,nn (2.2)
where the polynomial 4; is given by
9= (1=q Y (fo+ frg ™ ++ g H™
7=0,1,-,n. (2.3)
Here q" is a unit-delay operator, 1i.e.
¢ 'f(H=f(t-T) and the coefficients fi i=0,1,,1
are determined by integrating rules of

numerical integration.

For system analysis, the linear integral filter
of trapezoidal rule with [=1 is used. In this
case, we have the following relation between
the truncation error of numerical integration
and the sampling interval [1D].

Theorem 2. The linear integral filter of
trapezoidal rule with l=1 is given by
I f V(=87 f (0 +0(T™)
= fB-a Y U+ Y F (D +0(T™)
J=0.1,-,n (2.4)
where fo=T/2, and 0(x) implies that

lirgO(x),,r"r:c;éO.

Since both input and output signals that we
treat here are in sampled data form., we give
the LIF in the discrete form as follows

ol
Inf ¥ (k) '=v3jf<k)=2)p€f(kfi> (2.5)
I f P k=95 (k) +0(T™). (2.6)

3. Analysis of linear continuous systems

In this section, the main results on system
analysis will be presented. For details, the
reader is referred to [1D].

Let us first derive a discrete-time model for
predicting the system output in a simple way.
Integrating (1.1a) n times over the time interval
[t-T,t), using (2.8), we get
n

big n-iu k) +e(k)
=i

n
Fax(k)+ Y, @S nix (k)= a1
=1

i
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Here some real constant My exists such that

le (k) <MoT™*. (3.2)
Define
n
alq h=aorag g =g a8 (ao=1)
i=0
n
Ba N =Bo+BIG 4 Baq "= D 018 . (3.3)
=]

Then we have the following result.

Theorem 3. a(q'l) is stable if A(s) is stable.
That is, if sy zi i=1,2,»,n are roots of A(s)
and «a(z) respectively, we have

Real(s)<0 (i=1,2,,n)—=1zy>1 (i=1,2,,n). (3.4)
Proof. The theorem can be easily proved using
the bilinear =z transformation that is
well-known in the modern control theory.

For stable A(s), fo>0 can not be a root of A(s)
that is defined by

A(S)=1+ais++aps™. (3.5)
It follows easily that
ao=1+aifo+-+anfi=A(f0)=O0. (3.6)

Then from (3.1) and (3.3), the system output at
sampling instants can be predicted by

Tk) =[(ao-a(g N k) +B(q Hulk)l/ a 3.7
and the output error Ax(k):x(k)—i‘(k) satisfies
Lgmm(k)«»tﬁ“*"‘ (3.8)

whex;e the constant M; depends on the roots of
alq ).

It follows easily from (3.8) that for the stable
system, the output error can be made small by
choosing appropriately small sampling interval
when time proceeds sufficiently long.
Therefore, (3.7) can be taken as the predictor
of the system output x(k) at sampling instants.
I‘o initiate the predictor, we may choose
x(ky=x(k) for k=0.1,~.n--1 when the output
samples are available at first sampling instants
or x(k)=0 for k=0,,».n-1 when no information
on system output is available a priori. In the
later case, the initial effect will die out
gradually as time proceeds because the system
under consideration is stable.

Now we give a numerical example.

Consider a second-order continuous system
given by
(s*+2.55-1.0)x{t)=2.0u(t) (3.9)
with initial conditions x(0)=1.0, x(0)=5.0. The
system is stimulated by the input signal
u(t)=sint+1.58in1.5t+2.5sin2.5¢. (3.10)

The results are shown in Fig. 1. The curve
denoted by x was obtained using a fourth-order
Runge-Kutta method with the step size 0.001,
while the curves denoted by x, x2 were obtained
by the present method with T=0.01 when initial
conditions were taken as x(k)=x(k) and x(k)=0
for k=0,1 respectively.

It can be observed that when x(k)=x(k), k=0,1
the present method gives very satisfactory
results with less computation than the
Runge-Kutta method. When =x(k)=0, k=01 the
predicted output is approaching its true value
as time proceeds. Therefore this method can
be employed in adaptive control or parameter



estimation where few computations and good
accuracy are required. In the next section
the output predictor will be used to generate
instrumental variables for the adaptive IV
method.

T=0.01!

.
5 : 0.0 0.0 70.¢ 0.9 50.

Time

[

Fig.l Predicted values of the system output.

4. Parameter estimation

This section consists of three subsections.
An idealized IV estimator is presented and
discussed in §4.1. In §4.2, the estimator is

implemented in on-line way using adaptive
filtering, and some problems are discussed.
Monte-Carlo simulation analysis 1is given in

§4.3.

4.1 Idealized IV estimator

Operating on each of the terms in (l.la) with
the linear integral filter in the discrete form
(25) and substituting x(k) with y(k) in the
observation equation (1.3) yields

3+ aidnu(k) =Y biSnju(k)+e(k) 4.0
=1 j=1
where the equation error e(k) is given by

e(k) =3, u(k)+ . ;8- uik)
j=1

& (ho+hig e+ hug ™ u(k)

2H(qHu(k) (4.2)
and
Ri=Y a;pt  ag=1, i=0,1,,nl. (4.3)
=0
Here introduce the following notations
O =(ar » an by bn)T
B=(a1 = an by = b7
Pl =(=3n (k) = —Sou(k) In-u(k) - Jou(k))

D) =(~Fnrx (k) = —Fox(k) Sp-u(k) - Jou(k))

(4.4)
6" and & denote the vector of true parameters
and the vector of estimated parameters
respectively. Note that the elements of ¢(k)
are composed of the input signal u(k) and the
noise—free output signal x(k), and thus they

are independent of u(k) and also_e(k). It is,
therefore, possible to use o) as an
instrumental variable. In this case, the

idealized IV estimator can be written as follows

1047

N N
é~=[§ ammm’ﬂg )8k

4.5)
where N represents the number of data. It is
easy to find that

E[ (k) (3,y (k) ~p(k)T67)]
=E[@ (kY H(q Hu(k)1-0 (4.6)

which implies that the IV estimates given by

(4.5) is asymptotically consistent with
probability one (w.p.1) provided the inverse
exists [71

This kind of choice for instrumental variables
is very well-known and popular in discrete—time
model identification (DMI) (see e.g. [12], [13]).
However, this choice is not possible in practice,
because the true parameters are required.
Instead it is naturally suggested, as often used
in DMI, to implement the estimator using the
"boot-strapping” technique in  on-line or
iterative manner [11]. In this way, @(k) is
substituted with ¢(k,0) which is defined as

(k0 = (~ 9T (k) - —J02(k) Gpou(k) - Sou(k))T
. 4.7
where the signal x(k) is obtained by filtering
the input signal according to

7 -1

SR NGS 4.8
alq )

and

&<q“>=§ai9'n-i (ag=1)

B(a“)-gﬁ.s'm (4.9)

(see (3.3)).

4.2 On-line implementation

For simplicity, only the on-line estimator will
be discussed here. In this case, the estimates
are updated at each sampling instant k by the
following algorithm [3]

Bk)=0(k-1)+L(k)e(k)

P(k-1)¢ (k)
T+e(k)TPk-1¢ (k)

Pk)=P(k-1)~L e k) P(k-1)

Lk)=

e(k) =9,y —o (k) B(k-1). (4.10)

When the vector ((k) is replaced by the vector
o(k,8(k-1)), the above algorithm is the required
RIV algorithm discussed above. while it becomes
the well-known RLS algorithm when the vector
o(k) substitutes the vector ¢(k). It has been
shown that the LS estimates so—obtained are
alvays asymptotically biased (8], [14].

The convergence analysis of the above RIV
algorithm can be carried out using the ordinary
differential equation (ODE; approach [10] It
is easy to verify that

Et(k,07) (Snu(k)—o(k)T07)]
=E[@(kYH (g Hu(k)1=0

and the matrix

(4.1



ELp (k070 (0) T ZELD(K.0) (3ny (k) =0 (k) 0)1fo-or
=Ep (K)o (k) TTEL-S5 0 (k. 8) [p-rH (a ) v (k) = (K00 () )

=Elp(k)e() T (-Elp ko)D)

=7 (4.12)
has all eigenvalues in the left half plane,
where ¢(k,8)=¢(k) has been used. Therefore,
from (4.11) and (4.12), we can conclude that

Theorem 4. The RIV estimates generated by
(4.10) is locally convergent to the vector 0" of
true parameters.

In practical use of the on-line algorithm (4.10),
the following aspects should be considered.

(1) Setting initial conditions 6(0) and_ P(O).
For the RLS algorithm, 6(0)=0 and P(0)=CZI are
often taken where ¢ is a large number. But in
the above RIV algorithm, 6(0)=0 can not be taken
because the adaptive filtering scheme (4.8),
(4.9) is used. One easy-to-use way is to take
an LS estimate as the initial values of the
RIV algorithm, that is, the on-line algorithm
(410) runs with <({k)=¢(k) for some first
iterations, and then is switched to the IV
algorithm with ((k)=@(k,0(k-1)).

(2) Filtering the estimates before they are used
in (4.8), (4.9). In order to improve the function
of the adaptive filtering scheme, certain
modification is needed, i.e. 6(k) is substituted
with Or(k) which is given by

Or(k)=F (a0 (k) (4.13)
where F(q_l) may be a low pass filter, or
F(q)=q". Here the mean estimates

Bmn(k) =k (14q e q™B ) (4.14)

is taken as fr(k).

(8) Testing stability. Since the adaptive
filtering scheme is used for generating the
instrumental variables, its stableness must be
assured. According to Theorem 3, it is then
necessary to keep the parameter estimates (k)
in the stable domain Ds={ all roots of A(s) are
in the left half plane}. For this purpose, the
following projection algorithm can be used
instead of (4.10) [31.

Step |. Choose a factor O=u<l.

Step 2. Compute 40(k)=L(k)e(k).

Step 3. Compute Q(k):G(k—1)+A6(k).

Step 4. Test if 06(k)eDs. If yes, go to next
iteration; if not, go to step 5.

Step 5. Set 46(k):=p48(k) and go to step 3.

(4.15)
Here the factor p determines the reduction of
the step size. The experience tells that u=05
works well [3].

An implementation scheme for the above
adaptive instrumental variable method is shown
in Fig.2.

4.3 Monte-Carlo simulation analysis

To verify its feasibility, the above algorithm
has been evaluated by applying Monte-Carlo
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simulation to a second—order continuous system
described by

2@ B +ar® @y +azz ) =bu® (O +boult)

yk)=x(ky+vu(k) (4.16)
with system parameters given by
a=2.8, az=4.0, b;=0.0, b2=5.0 (4.17)
and subject to initial conditions x(0)=1.0,
+P0)=5.0.
v(t)
u(t) B(s) x(t) y{t)
>) A(s)
uk) Linear )
integral
filter z(k)
Recursive
IV algorithm
8 (k)
X
Low pass
filter
u (k) B(a™Y) % (k)
& ()

Fig.2 An implementation scheme
for the adaptive IV method.

In the simulation, the system was stimulated by
the input signal u(t) as (3.10). The linear
integral filter of trapezoidal rule with =12
was used, and the sampling interval T=0.05 vas
taken. The on-line algorithm (4.15) was run with
C(k)=p(k) at first 100 iterations and then
turned to the RIV algorithm with m=5 in (4.14).
The following cases of the noise contained in
the system output were considered.

(1) White noise:

v(k)=wlk) (4.18)
(2) Moving average (MA) process noise:
v(k)=(1-1.5¢"40.5725q D) w(k) (4.19)
(3) Autoregressive moving average (ARMA)
process noise:
| -2
v(k):l 1.5¢q :0.572532 wik) (4.20)
1-1.697+0.68q
wvhere {w(k)} was an identically and
independently distributed (i.i.d.)) Gaussian
sequence. The variance of w(k) was adjusted

to obtain the desired ratio of noise to signal
(N/S) defined by
_SD of u(k)
N/S=S5of =(k)
(SD, standard deviation).
was taken 20%.

(4.21)
Here the N/S ratio

Tables 2-4 shovw the results which were obtained



from Monte Carlo simulation of 20 experiments
in cases of white noise, MA process noise and

ARMA process noise, respectively. The tables
include the computed mean and standard
deviation of each estimate. The mean

(MNE) and average standard
are also included for quick

normalized error
deviation (ASD)

comparison. They are defined by
MNE = 10pean —O1°
1
__ X O .
ASD= T (4.22)

In order to demonstrate the effectiveness of
the IV estimator, the LS estimates in white
noise case is also presented in Table 1. It
can be observed from Tables 1-2 that the LS
estimates are asymptotically biased, while the
IV estimates seem to be convergent to the true
parameters. It can also found from Tables 2--4
that the precision of parameter estimates are
affected by the type of noise. When v{k) is a
filtered white noise by an MA process, the
effect on the precision seems to be less than
that of the other two cases. Nevertheless, the
precision in all cases can be improved by
taking a large number of data.

5. Conclusion

The linear integral filter for handling time
derivatives has been employed in the analysis
and parameter estimation of linear continuous
systems.

The discrete time model obtained using the
linear integral filter of trapezoidal rule with
=1 is equivalent to that obtained by the
well-known bilinear z transformation, and can
be used to predict the system output at
sampling instants. Some results on the output
error are presented. It has been found that
the system output can be predicted in a very
simple and accurate way. Thus it can be used
in adaptive control and parameter estimation,

where simple analysis methods are often
required.
For parameter estimation, an identification

model is first derived, from which parameters
of a continuous system can be determined in a

direct way. The idealized estimator of
instrumental variable type using the noise-free
output signals is discussed, and then
implemented using the "boot - strapping”
technique in an on-line way. The output
predictor discussed in section 3 is used to
generate the instrumental variables 1in the

adaptive IV method. The convergence analysis
of the proposed on-line algorithm 1s carried
out using the ODE approach, and some problems
on implementation are also discussed. The
results obtained using Monte-Carlo simulation
have confirmed the theoretical analysis.
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Table 1. Parameter

estimates using the LS algorithm in white noise case.

True value N=1000 N=2000 N=5000 N=7000 N=10000
L 2.8 2.566+.120 | 2.536+.125 | 2.5274.056 | 2.522+.048 | 2.521+.037
az 4.0 3.951+.183 | 3.957+.135 | 3.9842.059 | 4.003+.060 | 4.003+.045
b: 0.0 0.063+.047 | 0.068+.047 | 0.065¢.020 | 0.061+.021 | 0.061+.015
bz 5.0 4.649+.186 | 4.612+.178 | 4.593+.081 | 4.578+.069 | 4.577+.058
MNE (x103) 3.78 4.63 5.00 5.30 5.34
ASD (x1071) 1.34 1.21 0.54 0.49 0.38

Table 2. Parameter

estimates using the IV algorithm in white noise case.

True value N=1000 N=2000 N=5000 N=7000 N=10000
a; 2.8 2.904+.153 | 2.864+.121 | 2.849+.060 | 2.832+.058 | 2.826+.043
az 4.0 3.956+.184 | 3.952+.122 | 3.9842.061 | 3.991+.059 | 3.987+.043
b1 0.0 -0.010+.045 |-0.000+.040 | -0.003%.019 [-0.002¢.020 | 0.000¢.015
b2 5.0 5.167¢.250 | 5.119+.180 | 5.088:.092 | 5.058+.088 | 5.052+.066
MNE (x1073) 0.84 0.42 0.21 0.09 0.07
ASD (x1071) 1.58 1.16 0.58 0.57 0.41

Table 3. Parameter estimates using the IV algorithm in MA process noise case.

True value N=1000 N=2000 N=5000 N=7000 N=10000
ay 2.8 2.820+.009 | 2.817£.009 { 2.818+.007 | 2.818+.007 | 2.818+.006
az 4.0 3.996+.011 | 3.996+.008 | 3.997+.005 | 3.998+.006 | 3.998+.005
b1 0.0 0.000£.003 | 0.001£,002 1 0.000£.001 | 0.000£.001 | 0.000£.001
b 5.0 5.035+.012 5.0321.012[ 5.033£.007 | 5.033+.006 | 5.033+.006

HNE (<10°3) 0.03 0.03 | 0.03 0.03 0.03
ASD (x1071) 0.09 0.08 | 0.05 0.05 0.04
Table 4. Parameter estimates using the IV algorithm in ARMA process noise case.

True value J, N=1000 N=2000 N=5000 N=7000 N=10000
a 2.8 2.915+.190 | 2.869+.152 | 2.853£.075 { 2.835+.075 | 2.828+.056
az 4.0 3.943+.229 | 3.946+.139 ] 3.982+.074 | 3.990+,068 | 3.986+.049
bi 0.0 -0.010+.060 (-0.001£.048 | -0.003£.024 |-0.002+.025 | 0.001%.019
b2 5.0 5.188+.309 | 5.128+.230 | 5.085:.117 | 5.063+.115 | 5.055+.086

MNE (x1073) [ 1.06 0.49 0.25 0.11 0.08
ASD (x1071) ] 1.97 1.42 0.72 0.71 0.52
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