• Title/Summary/Keyword: Recurrent neural networks

Search Result 285, Processing Time 0.031 seconds

Implementation of Image Thinning using Threshold Neural Network (선형 신경 회로망을 이용한 영상 Thinning구현)

  • 박병준;이정훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.310-314
    • /
    • 2000
  • This paper proposes a new parallel architecture for extracting the object from binarized images using recurrent linear threshold neural networks. Binary functions are initially obtained from the existing iterative thinning algorithms, and the linear threshold neural threshold neural networks are then synthesized using the MSP term grouping algorithm. Experimental results show that the proposed architectures can be implemented easier than with other existing methods.

  • PDF

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

Real Time Current Prediction with Recurrent Neural Networks and Model Tree

  • Cini, S.;Deo, Makarand Chintamani
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.116-130
    • /
    • 2013
  • The prediction of ocean currents in real time over the warning times of a few hours or days is required in planning many operation-related activities in the ocean. Traditionally this is done through numerical models which are targeted toward producing spatially distributed information. This paper discusses a complementary method to do so when site-specific predictions are desired. It is based on the use of a recurrent type of neural network as well as the statistical tool of model tree. The measurements made at a site in Indian Ocean over a period of 4 years were used. The predictions were made over 72 time steps in advance. The models developed were found to be fairly accurate in terms of the selected error statistics. Among the two modeling techniques the model tree performed better showing the necessity of using distributed models for different sub-domains of data rather than a unique one over the entire input domain. Typically such predictions were associated with average errors of less than 2.0 cm/s. Although the prediction accuracy declined over longer intervals, it was still very satisfactory in terms of theselected error criteria. Similarly prediction of extreme values matched with that of the rest of predictions. Unlike past studies both east-west and north-south current components were predicted fairly well.

Arabic Text Recognition with Harakat Using Deep Learning

  • Ashwag, Maghraby;Esraa, Samkari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Because of the significant role that harakat plays in Arabic text, this paper used deep learning to extract Arabic text with its harakat from an image. Convolutional neural networks and recurrent neural network algorithms were applied to the dataset, which contained 110 images, each representing one word. The results showed the ability to extract some letters with harakat.

Satellite communication Equalizer Using Complex Bilinear Recurrent Neural Network (C-BLRNN을 이용한 위성채널 등화기)

  • 박동철;정태균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.375-382
    • /
    • 2000
  • Equalization of satellite communication using Complex-Bilinear Recurrent Neural Network(C-BLRNN) is proposed in this pater. Since the BLRNN is based on the bilinear polynomial and it has been more effectively used in modeling highly nonlinear systems with time-series characteristics than multi-layer perception type neural networks(MLPNN) , it can be applied to satellite equalizer. the proposed C-BLRNN based equalizer for M-PSK with a channel model is compared with Volterra filter Equalizer, DFE, and conventional Complex MLPNN Equlizer. The results show that the proposed C-BLRNN based equalizer gives very favorable results in both of MSE and BER criteria over other equalizers.

  • PDF

Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule (2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어)

  • Kwak D.H.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

Two-dimensional attention-based multi-input LSTM for time series prediction

  • Kim, Eun Been;Park, Jung Hoon;Lee, Yung-Seop;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.39-57
    • /
    • 2021
  • Time series prediction is an area of great interest to many people. Algorithms for time series prediction are widely used in many fields such as stock price, temperature, energy and weather forecast; in addtion, classical models as well as recurrent neural networks (RNNs) have been actively developed. After introducing the attention mechanism to neural network models, many new models with improved performance have been developed; in addition, models using attention twice have also recently been proposed, resulting in further performance improvements. In this paper, we consider time series prediction by introducing attention twice to an RNN model. The proposed model is a method that introduces H-attention and T-attention for output value and time step information to select useful information. We conduct experiments on stock price, temperature and energy data and confirm that the proposed model outperforms existing models.

Performance Evaluation of Recurrent Neural Network Algorithms for Recommendation System in E-commerce (전자상거래 추천시스템을 위한 순환신경망 알고리즘들의 성능평가)

  • Seo, Jihye;Yong, Hwan-Seung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.440-445
    • /
    • 2017
  • Due to the advance of e-commerce systems, the number of people using online shopping and products has significantly increased. Therefore, the need for an accurate recommendation system is becoming increasingly more important. Recurrent neural network is a deep-learning algorithm that utilizes sequential information in training. In this paper, an evaluation is performed on the application of recurrent neural networks to recommendation systems. We evaluated three recurrent algorithms (RNN, LSTM and GRU) and three optimal algorithms(Adagrad, RMSProp and Adam) which are commonly used. In the experiments, we used the TensorFlow open source library produced by Google and e-commerce session data from RecSys Challenge 2015. The results using the optimal hyperparameters found in this study are compared with those of RecSys Challenge 2015 participants.

Recognition of Characters Printed on PCB Components Using Deep Neural Networks (심층신경망을 이용한 PCB 부품의 인쇄문자 인식)

  • Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.6-10
    • /
    • 2021
  • Recognition of characters printed or marked on the PCB components from images captured using cameras is an important task in PCB components inspection systems. Previous optical character recognition (OCR) of PCB components typically consists of two stages: character segmentation and classification of each segmented character. However, character segmentation often fails due to corrupted characters, low image contrast, etc. Thus, OCR without character segmentation is desirable and increasingly used via deep neural networks. Typical implementation based on deep neural nets without character segmentation includes convolutional neural network followed by recurrent neural network (RNN). However, one disadvantage of this approach is slow execution due to RNN layers. LPRNet is a segmentation-free character recognition network with excellent accuracy proved in license plate recognition. LPRNet uses a wide convolution instead of RNN, thus enabling fast inference. In this paper, LPRNet was adapted for recognizing characters printed on PCB components with fast execution and high accuracy. Initial training with synthetic images followed by fine-tuning on real text images yielded accurate recognition. This net can be further optimized on Intel CPU using OpenVINO tool kit. The optimized version of the network can be run in real-time faster than even GPU.

Texture Based Automated Segmentation of Skin Lesions using Echo State Neural Networks

  • Khan, Z. Faizal;Ganapathi, Nalinipriya
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.436-442
    • /
    • 2017
  • A novel method of Skin lesion segmentation based on the combination of Texture and Neural Network is proposed in this paper. This paper combines the textures of different pixels in the skin images in order to increase the performance of lesion segmentation. For segmenting skin lesions, a two-step process is done. First, automatic border detection is performed to separate the lesion from the background skin. This begins by identifying the features that represent the lesion border clearly by the process of Texture analysis. In the second step, the obtained features are given as input towards the Recurrent Echo state neural networks in order to obtain the segmented skin lesion region. The proposed algorithm is trained and tested for 862 skin lesion images in order to evaluate the accuracy of segmentation. Overall accuracy of the proposed method is compared with existing algorithms. An average accuracy of 98.8% for segmenting skin lesion images has been obtained.