References
- Mohd, M., Qamar, F., Al-Sheik, I., Salah, R.: Quranic optical text recognition using deep learning models. In: IEEE Access, vol. 99, pp. 1, 2011.
- Fasha, M., Hammo, B., Obeid, N.: A hybrid deep learning model for Arabic text recognition. In: International Journal of Advanced Computer Science and Applications (IJACSA), vol.11(8), 2020.
- Ranjan, J., Amrita, C., Sk, I.: Optical character recognition from text imagel. In: International Journal of Computer Applications Technology and Research, vol.3(4), pp.240-244, 2014. https://doi.org/10.7753/IJCATR0304.1009
- Anwar, K., Nugroho, H.: A segmentation scheme of Arabic words with harakat In: 2015 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), pp. 111-114, (2015)
- Qaroush, A., Awad, A., Modallal, M., Ziq, M.: Segmentation-based omnifont printed Arabic character recognition without font identification. In: Journal of King Saud University - Computer and Information Sciences, (2020)
- Ryding, K.: A reference grammar of modern standard Arabic. In: Cambridge, UK: Cambridge University Press, pp. 25-34, (2005)
- Lyovin, A., Kessler, B., Leben, W.: An introduction to the languages of the world. In: Oxford, New York: Oxford University Press, pp. 255, (2017)
- Yousfi, S.: Embedded Arabic text detection and recognition in videos. Ph.D. dissertation, University of de Lyon, Lyon, France, (2016)
- Elnagar, A., Al-Debsi, R., Einea, O.: Arabic text classification using deep learning models. In: Information Processing and Management, vol. 57(1), pp. 102121, (2020)
- Jain, M., Mathew, M., Jawahar, C. V.: "Unconstrained scene text and video text recognition for Arabic script. In: 2017 1st International Workshop on Arabic Script Analysis and Recognition, (2017)
- Tang, Z., Jialing, Y., Zhe, L., Fang, Q.: Grape disease image classification based on lightweight convolution neural networks and channel-wise attention. In: Computers and Electronics in Agriculture, vol. 178, pp. 105735, (2010)
- Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D Nonlinear Phenomena, vol. 404(8), p.132306, 2020.
- Grossberg, S.: Recurrent neural networks. Scholarpedia journal, vol.8(2), p.1888, (2013)
- Abu-Rabia, S.: The role of short vowels in reading arabic: a critical literature review. Journal of Psycholinguistic Research, vol.48(4), (2019)
- Abu-Rabia, S.: The effect of Arabic vowels on the reading comprehension of second- and sixth-grade native Arab children. Journal of Psycholinguistic Research, vol.28(1), pp.93-101, (1999) https://doi.org/10.1023/A:1023291620997
- Abu-Rabia, S.: Reading arabic texts: effects of text type, reader type and vowelisation. In: Reading and Writing, vol.10, pp.105-119, (1998) https://doi.org/10.1023/A:1007906222227
- Abu-Rabia, S.: The role of vowels in reading Semitic scripts: Data from Arabic and Hebrew. In: Reading and Writing, vol.14(1-2), pp.39-59, (2001) https://doi.org/10.1023/a:1008147606320
- Samkari, E.: Arabic Text with Harakat dataset. (2022) [Online]. Available:https://drive.google.com/drive/folders/1fdCPlDO3L5rTe-HuR26hqY5ojM9GCwYS?usp=sharing.
- iLoveIMG: The fastest free web app for easy image modification. (2022) [Online]. Available: https://www.iloveimg.com/
- Chung, J. Gulcehre, C., Cho, K. Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modelling. arXiv preprint, vol.1412.3555, (2014)
- Hochreiter, S., Schmidhuber, J.: Long short-term memory. In:Neural Computation, vol.9(8), pp.1735-1780,(1997) https://doi.org/10.1162/neco.1997.9.8.1735
- Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In: ICML 2006 - Proceedings of the 23rd International Conference on Machine Learning, (2006)
- A_K_Nain: OCR model for reading Captchas. (2022) [Online]. Available: https://keras.io/examples/vision/captcha_ocr/.
- Google Colab: Frequently Asked Questions. (2022) [Online]. Available: https://research.google.com/colaboratory/faq.html#resource-limits.