Browse > Article
http://dx.doi.org/10.6113/JPE.2013.13.1.139

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems  

El-Sousy, Fayez F.M. (Dept. of Electrical Engineering, College of Engineering, Salman bin Abdulaziz University)
Publication Information
Journal of Power Electronics / v.13, no.1, 2013 , pp. 139-160 More about this Journal
Abstract
In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.
Keywords
$L_2$ tracking performance; Lyapunov satiability theorem; Permanent-magnet synchronous motor (PMSM) servo drive; Recurrent interval type-2 fuzzy-neural-network (RIT2FNN); Wavelet neural networks;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. M. Mendel and R. I. B. John, "Type-2 fuzzy sets made simple," IEEE Trans. Fuzzy Syst., Vol. 10, No. 2, pp. 117-127, Apr. 2002.   DOI   ScienceOn
2 J. M. Mendel, R. I. B. John, and F. Liu, "Interval type-2 fuzzy logic systems made simple," IEEE Trans. Fuzzy Syst., Vol. 14, No. 6, pp. 808-821, Dec. 2006.   DOI   ScienceOn
3 J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Englewood Cliffs, NJ: Prentice-Hall, 2001.
4 N. N. Karnik and J. M. Mendel, "Centroid of a type-2 fuzzy set," Inf. Sci., Vol. 132, No. 1, pp. 195-220, 2001.   DOI   ScienceOn
5 Q. Liang and J. M. Mendel, "Interval type-2 fuzzy logic systems: Theory and design," IEEE Trans. Fuzzy Syst., Vol. 8, No. 5, pp. 535-550, Oct. 2000.   DOI   ScienceOn
6 M. Singh, S. Srivastava, J. R. P. Gupta, and M. Hanmandlu, "A type-2 fuzzy neural model based control of a nonlinear system," IEEE Int. Conf. Cybern. Intell. Syst., Vol. 2, pp. 1352-1356, 2004.
7 M. Karakose and E. Akin, "Type-2 fuzzy activation function for multilayer feedforward neural networks," IEEE Int. Conf. Syst., Man Cybern., Vol. 4, pp. 3762-3767, Oct. 10-13, 2004.
8 C. Lynch, H. Hagras, and V. Callaghan, "Using uncertainty bounds in the design of an embedded real-time type-2 neuro-fuzzy speed controller for marine diesel engines," IEEE Int. Conf. Fuzzy Syst., pp. 1446-1453, Jul. 2006.
9 C. H. Wang, C. S. Cheng, and T. T. Lee, "Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN)," IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 34, No. 3, pp. 1462-1477, Jun. 2004.   DOI   ScienceOn
10 I. Daubechies, "Orthonormal bases of compactly supported wavelets," Comm. Pure & Appl. Math., Vol. 41, No. 7, pp. 909-996, 1988.   DOI
11 T. Yamakawa, E. Uchino, and T. Samatsu, "Wavelet neural networks employing over-complete number of compactly supported nonorthogonal wavelets and their applications," IEEE Int. Conf. Neural Networks, Vol. 3, pp. 1391-1396, 1994.
12 C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., Vol. 6, No. 1, pp. 12-32, Feb. 1998.   DOI   ScienceOn
13 V. V. Cross and T. A. Sudkamp, Similarity and Compatibility in Fuzzy Set Theory: Assessment and Application, Heidelberg, Germany: Physica-Verlag, 2002.
14 D. Wu and J. M. Mendel, "A vector similarity measure for interval type-2 fuzzy sets," IEEE Int. Conf. Fuzzy Syst., pp. 1-6, Jul. 2007.
15 J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
16 K. J. Astrom and B. Wittenmark, Adaptive Control, New York: Addison Wesley, 1995.
17 B. S. Chen and C. H. Lee, and Y.-C. Chang, "$H^{\infty}$ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach," IEEE Trans. Fuzzy Syst., Vol. 4, No. 1, pp. 32-43, Feb. 1996.   DOI   ScienceOn
18 A. Rubaai, "Direct adaptive fuzzy control design achieving $H^{\infty}$ tracking for high performance servo drives," IEEE Trans. Energy Convers., Vol. 14, No. 4, pp. 1199-1208, Dec. 1999.   DOI   ScienceOn
19 C. Chang and B. S. Chen, "A nonlinear adaptive $H^{\infty}$ tracking control design in robotic systems via neural networks," IEEE Trans. Contr. Syst. Technol., Vol. 5, No. 1, pp. 23-29, 1997.
20 M. C. Hwang, X. Hu, and Y. Shrivastava, "Adaptive $H^{\infty}$ neural network tracking controller for electrically driven manipulators," Proc. IEE-Control Theory Application, Vol. 145, No. 6, pp. 594-602, 1998.   DOI   ScienceOn
21 J. A. Ball, P. Kachroo, and A. J. Krener, "$H^{\infty}$ tracking control for a class of nonlinear systems," IEEE Trans. Automatic Control, Vol. 44, No. 6, pp. 1202-1206, Jun. 1999.   DOI   ScienceOn
22 F. F. M. El-Sousy, "Hybrid recurrent cerebellar model articulation controller-based supervisory $H^{\infty}$ motion control system for permanent-magnet synchronous motor servo drive," IET-Electric Power Application, Vol. 5, No. 7, pp. 563-579, Aug. 2011.   DOI   ScienceOn
23 F. F. M. El-Sousy, "Robust adaptive $H^{\infty}$ position control via a wavelet-neural-network for a DSP-based permanentmagnet synchronous motor servo drive system," IET-Electric Power Application, Vol. 4, No. 5, pp. 333-347, May 2010.   DOI   ScienceOn
24 F. F. M. El-Sousy, "Hybrid $H^{\infty}$-based wavelet-neuralnetwork tracking control for permanent-magnet synchronous motor drives," IEEE Trans. Ind. Electron., Vol. 57, No. 9, pp. 3157-3166, Sep. 2010.   DOI   ScienceOn
25 F. F. M. El-Sousy, "Intelligent model-following position control for pmsm servo drives," in Proc. 6th WSEAS Int. Conf. Neural Netw., pp. 230-238, Jul. 2005.
26 F. F. M. El-Sousy, "An intelligent model-following sliding-mode position controller for pmsm servo drives," 4th IEEE International Conference on Mechatronics, May 2007.
27 W. Leonhard, Control of Electrical Drives, Springer-Verlag, Berlin, 1996.
28 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, Prentice-Hall, New Jersey, 2001.
29 F. F. M. El-Sousy, "Robust wavelet-neural-network sliding-mode control system for permanent-magnet synchronous motor drive," IET-Electric Power Application, Vol. 5, No. 1, pp. 113-132, Jan. 2011.
30 K. Jezernik and M. Rodic, "High precision motion control of servo drives," IEEE Trans. Ind. Electron., Vol. 56, No. 10, pp. 3810-3816, Oct. 2009.   DOI   ScienceOn
31 J. W. Finch and D. Giaouris, "Controlled AC Electrical Drives," IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 481-491, 2008.   DOI   ScienceOn
32 X. Lin-Shi, F. Morel, A. M. Llor, B. Allard, J.-M. Retif, "Implementation of hybrid control for motor drives," IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 1946-1952, Aug. 2007.   DOI   ScienceOn
33 M. Teshnehllab and K. Watanabe, "Self tuning of computed torque gains by using neural networks with flexible structures," Proc. Inst. Elect. Eng. Control Theory Appl., Vol. 141, No. 4, pp. 235-242, 1994.   DOI   ScienceOn
34 F. J. Lin, Y. S. Lin, and S. L. Chiu, "Slider-crank mechanism control using adaptive computed torque technique," Proc. Inst. Elect. Eng. Control Theory Appl., Vol. 145, No. 3, pp. 364-376, 1998.   DOI   ScienceOn
35 R. J. Wai, "Hybrid control for speed sensorless induction motor drive," IEEE Trans. Fuzzy Syst., Vol. 9, No. 1, pp. 116-138, Feb. 2001.   DOI   ScienceOn
36 F. F. M. El-Sousy, "Robust tracking control based on intelligent sliding-mode model-following position controller for pmsm servo drives," Journal of Power Electronics, Vol. 7, No. 2, pp. 159-173, Apr. 2007.
37 K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Netw., Vol. 1, No. 1, pp. 4-27, 1990.   DOI   ScienceOn
38 F. F. M. El-Sousy, "Robust adaptive wavelet-neuralnetwork sliding-mode control for a dsp-based pmsm drive system," Journal of Power Electronics, Vol. 10, No. 5, pp. 518-527, Sep. 2010.   DOI   ScienceOn
39 F. F. M. El-Sousy, "A vector-controlled pmsm drive with a continually on-line learning hybrid neural-network model-following speed controller," Journal of Power Electronics, Vol. 5, No. 2, pp. 197-210, Apr. 2005.
40 K. T. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis, New York: Wiley, 2001.
41 Y. S. Lu and J. S. Chen, "A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems," IEEE Trans. Ind. Electron., Vol. 41, No. 5, pp. 492-502, Oct. 1994.   DOI   ScienceOn
42 F. J. Lin, W. J. Hwang, and R. J. Wai, "A supervisory fuzzy neural network control system for tracking periodic inputs," IEEE Trans. Fuzzy Syst., Vol. 7, No. 1, pp. 41-52, Feb. 1999.   DOI   ScienceOn
43 W. Y. Wang, Y. G. Leu, and C. C. Hsu, "Robust adaptive fuzzy-neural control of nonlinear dynamical systems using generalized projection update law and variable structure controller," IEEE Trans. Syst., Man, Cybern. B, Vol. 31, No. 1, pp. 140-147, Feb. 2001.   DOI   ScienceOn
44 R. J. Wai and F. J. Lin, "Fuzzy neural network sliding mode position controller for induction servo motor drive," Proc. Inst. Elect. Eng. Electr. Power Applicat., Vol. 146, No. 3, pp. 297-308, 1999.   DOI   ScienceOn
45 F. J. Lin and C. H. Lin, "Online gain-tuning IP controller using RFNN," IEEE Trans. Aerosp. Electron. Syst., Vol. 37, No. 2, pp. 655-670, Apr. 2001.   DOI   ScienceOn
46 C. H. Wang, H. L. Liu, and T. C. Lin, "Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems," IEEE Trans. Fuzzy Syst., Vol. 10, No. 1, pp. 39-49, Feb. 2002.   DOI   ScienceOn
47 Y. G. Leu, W. Y. Wang, and T. T. Lee, "Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems," IEEE Trans. Robot. Automat., Vol. 15, No. 5, pp. 805-817, Oct. 1999.   DOI   ScienceOn
48 J. Zhang and A. J. Morris, "Recurrent neuro-fuzzy networks for nonlinear process modeling," IEEE Trans. Neural Netw., Vol. 10, No. 2, pp. 313-326, Mar. 1999.   DOI   ScienceOn
49 C. H. Lee and C.C. Teng, "Identification and control of dynamic systems using recurrent-fuzzy-neural -network," IEEE Trans. Fuzzy Syst., Vol. 8, No. 4, pp. 349-366, Aug. 2000.   DOI   ScienceOn
50 F. J. Lin, P. K., Huang and W. D. Chou, "Recurrent-Fuzzy-Neural-Network-Controlled Linear Induction Motor Servo Drive Using Genetic Algorithms," IEEE Trans. Ind. Electron., Vol. 54, No. 3, pp. 1449-1461, Jun. 2007.   DOI   ScienceOn
51 C. F. Hsu and K. H. Cheng, "'Recurrent fuzzy-neural approach for nonlinear control using dynamic structure learning scheme," Neurocomputing, Vol. 71, No. 16-18, pp. 3447-3459, 2008.   DOI   ScienceOn
52 C. J Lin. and Y. C. Hsu, "Reinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systems," IEEE Trans. Fuzzy Syst., Vol. 15, No. 4, pp. 729-745, Aug. 2007.   DOI   ScienceOn
53 L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning-I," Inf. Sci., Vol. 8, No. 3, pp. 199-249, 1975.   DOI   ScienceOn