DOI QR코드

DOI QR Code

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M. (Dept. of Electrical Engineering, College of Engineering, Salman bin Abdulaziz University)
  • Received : 2011.12.23
  • Published : 2013.01.20

Abstract

In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

Keywords

References

  1. W. Leonhard, Control of Electrical Drives, Springer-Verlag, Berlin, 1996.
  2. R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, Prentice-Hall, New Jersey, 2001.
  3. F. F. M. El-Sousy, "Robust wavelet-neural-network sliding-mode control system for permanent-magnet synchronous motor drive," IET-Electric Power Application, Vol. 5, No. 1, pp. 113-132, Jan. 2011.
  4. K. Jezernik and M. Rodic, "High precision motion control of servo drives," IEEE Trans. Ind. Electron., Vol. 56, No. 10, pp. 3810-3816, Oct. 2009. https://doi.org/10.1109/TIE.2009.2020709
  5. J. W. Finch and D. Giaouris, "Controlled AC Electrical Drives," IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 481-491, 2008. https://doi.org/10.1109/TIE.2007.911209
  6. X. Lin-Shi, F. Morel, A. M. Llor, B. Allard, J.-M. Retif, "Implementation of hybrid control for motor drives," IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 1946-1952, Aug. 2007. https://doi.org/10.1109/TIE.2007.898303
  7. M. Teshnehllab and K. Watanabe, "Self tuning of computed torque gains by using neural networks with flexible structures," Proc. Inst. Elect. Eng. Control Theory Appl., Vol. 141, No. 4, pp. 235-242, 1994. https://doi.org/10.1049/ip-cta:19941225
  8. F. J. Lin, Y. S. Lin, and S. L. Chiu, "Slider-crank mechanism control using adaptive computed torque technique," Proc. Inst. Elect. Eng. Control Theory Appl., Vol. 145, No. 3, pp. 364-376, 1998. https://doi.org/10.1049/ip-cta:19982051
  9. R. J. Wai, "Hybrid control for speed sensorless induction motor drive," IEEE Trans. Fuzzy Syst., Vol. 9, No. 1, pp. 116-138, Feb. 2001. https://doi.org/10.1109/91.917119
  10. K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Netw., Vol. 1, No. 1, pp. 4-27, 1990. https://doi.org/10.1109/72.80202
  11. F. F. M. El-Sousy, "Robust adaptive wavelet-neuralnetwork sliding-mode control for a dsp-based pmsm drive system," Journal of Power Electronics, Vol. 10, No. 5, pp. 518-527, Sep. 2010. https://doi.org/10.6113/JPE.2010.10.5.518
  12. F. F. M. El-Sousy, "A vector-controlled pmsm drive with a continually on-line learning hybrid neural-network model-following speed controller," Journal of Power Electronics, Vol. 5, No. 2, pp. 197-210, Apr. 2005.
  13. F. F. M. El-Sousy, "Robust tracking control based on intelligent sliding-mode model-following position controller for pmsm servo drives," Journal of Power Electronics, Vol. 7, No. 2, pp. 159-173, Apr. 2007.
  14. K. T. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis, New York: Wiley, 2001.
  15. Y. S. Lu and J. S. Chen, "A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems," IEEE Trans. Ind. Electron., Vol. 41, No. 5, pp. 492-502, Oct. 1994. https://doi.org/10.1109/41.315267
  16. F. J. Lin, W. J. Hwang, and R. J. Wai, "A supervisory fuzzy neural network control system for tracking periodic inputs," IEEE Trans. Fuzzy Syst., Vol. 7, No. 1, pp. 41-52, Feb. 1999. https://doi.org/10.1109/91.746304
  17. W. Y. Wang, Y. G. Leu, and C. C. Hsu, "Robust adaptive fuzzy-neural control of nonlinear dynamical systems using generalized projection update law and variable structure controller," IEEE Trans. Syst., Man, Cybern. B, Vol. 31, No. 1, pp. 140-147, Feb. 2001. https://doi.org/10.1109/3477.907573
  18. R. J. Wai and F. J. Lin, "Fuzzy neural network sliding mode position controller for induction servo motor drive," Proc. Inst. Elect. Eng. Electr. Power Applicat., Vol. 146, No. 3, pp. 297-308, 1999. https://doi.org/10.1049/ip-epa:19990290
  19. C. H. Wang, H. L. Liu, and T. C. Lin, "Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems," IEEE Trans. Fuzzy Syst., Vol. 10, No. 1, pp. 39-49, Feb. 2002. https://doi.org/10.1109/91.983277
  20. Y. G. Leu, W. Y. Wang, and T. T. Lee, "Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems," IEEE Trans. Robot. Automat., Vol. 15, No. 5, pp. 805-817, Oct. 1999. https://doi.org/10.1109/70.795786
  21. J. Zhang and A. J. Morris, "Recurrent neuro-fuzzy networks for nonlinear process modeling," IEEE Trans. Neural Netw., Vol. 10, No. 2, pp. 313-326, Mar. 1999. https://doi.org/10.1109/72.750562
  22. F. J. Lin and C. H. Lin, "Online gain-tuning IP controller using RFNN," IEEE Trans. Aerosp. Electron. Syst., Vol. 37, No. 2, pp. 655-670, Apr. 2001. https://doi.org/10.1109/7.937476
  23. C. H. Lee and C.C. Teng, "Identification and control of dynamic systems using recurrent-fuzzy-neural -network," IEEE Trans. Fuzzy Syst., Vol. 8, No. 4, pp. 349-366, Aug. 2000. https://doi.org/10.1109/91.868943
  24. F. J. Lin, P. K., Huang and W. D. Chou, "Recurrent-Fuzzy-Neural-Network-Controlled Linear Induction Motor Servo Drive Using Genetic Algorithms," IEEE Trans. Ind. Electron., Vol. 54, No. 3, pp. 1449-1461, Jun. 2007. https://doi.org/10.1109/TIE.2007.892256
  25. C. F. Hsu and K. H. Cheng, "'Recurrent fuzzy-neural approach for nonlinear control using dynamic structure learning scheme," Neurocomputing, Vol. 71, No. 16-18, pp. 3447-3459, 2008. https://doi.org/10.1016/j.neucom.2007.10.014
  26. C. J Lin. and Y. C. Hsu, "Reinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systems," IEEE Trans. Fuzzy Syst., Vol. 15, No. 4, pp. 729-745, Aug. 2007. https://doi.org/10.1109/TFUZZ.2006.889920
  27. L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning-I," Inf. Sci., Vol. 8, No. 3, pp. 199-249, 1975. https://doi.org/10.1016/0020-0255(75)90036-5
  28. J. M. Mendel and R. I. B. John, "Type-2 fuzzy sets made simple," IEEE Trans. Fuzzy Syst., Vol. 10, No. 2, pp. 117-127, Apr. 2002. https://doi.org/10.1109/91.995115
  29. J. M. Mendel, R. I. B. John, and F. Liu, "Interval type-2 fuzzy logic systems made simple," IEEE Trans. Fuzzy Syst., Vol. 14, No. 6, pp. 808-821, Dec. 2006. https://doi.org/10.1109/TFUZZ.2006.879986
  30. J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Englewood Cliffs, NJ: Prentice-Hall, 2001.
  31. N. N. Karnik and J. M. Mendel, "Centroid of a type-2 fuzzy set," Inf. Sci., Vol. 132, No. 1, pp. 195-220, 2001. https://doi.org/10.1016/S0020-0255(01)00069-X
  32. Q. Liang and J. M. Mendel, "Interval type-2 fuzzy logic systems: Theory and design," IEEE Trans. Fuzzy Syst., Vol. 8, No. 5, pp. 535-550, Oct. 2000. https://doi.org/10.1109/91.873577
  33. M. Singh, S. Srivastava, J. R. P. Gupta, and M. Hanmandlu, "A type-2 fuzzy neural model based control of a nonlinear system," IEEE Int. Conf. Cybern. Intell. Syst., Vol. 2, pp. 1352-1356, 2004.
  34. M. Karakose and E. Akin, "Type-2 fuzzy activation function for multilayer feedforward neural networks," IEEE Int. Conf. Syst., Man Cybern., Vol. 4, pp. 3762-3767, Oct. 10-13, 2004.
  35. C. Lynch, H. Hagras, and V. Callaghan, "Using uncertainty bounds in the design of an embedded real-time type-2 neuro-fuzzy speed controller for marine diesel engines," IEEE Int. Conf. Fuzzy Syst., pp. 1446-1453, Jul. 2006.
  36. C. H. Wang, C. S. Cheng, and T. T. Lee, "Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN)," IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 34, No. 3, pp. 1462-1477, Jun. 2004. https://doi.org/10.1109/TSMCB.2004.825927
  37. I. Daubechies, "Orthonormal bases of compactly supported wavelets," Comm. Pure & Appl. Math., Vol. 41, No. 7, pp. 909-996, 1988. https://doi.org/10.1002/cpa.3160410705
  38. T. Yamakawa, E. Uchino, and T. Samatsu, "Wavelet neural networks employing over-complete number of compactly supported nonorthogonal wavelets and their applications," IEEE Int. Conf. Neural Networks, Vol. 3, pp. 1391-1396, 1994.
  39. C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., Vol. 6, No. 1, pp. 12-32, Feb. 1998. https://doi.org/10.1109/91.660805
  40. V. V. Cross and T. A. Sudkamp, Similarity and Compatibility in Fuzzy Set Theory: Assessment and Application, Heidelberg, Germany: Physica-Verlag, 2002.
  41. D. Wu and J. M. Mendel, "A vector similarity measure for interval type-2 fuzzy sets," IEEE Int. Conf. Fuzzy Syst., pp. 1-6, Jul. 2007.
  42. J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
  43. K. J. Astrom and B. Wittenmark, Adaptive Control, New York: Addison Wesley, 1995.
  44. B. S. Chen and C. H. Lee, and Y.-C. Chang, "$H^{\infty}$ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach," IEEE Trans. Fuzzy Syst., Vol. 4, No. 1, pp. 32-43, Feb. 1996. https://doi.org/10.1109/91.481843
  45. A. Rubaai, "Direct adaptive fuzzy control design achieving $H^{\infty}$ tracking for high performance servo drives," IEEE Trans. Energy Convers., Vol. 14, No. 4, pp. 1199-1208, Dec. 1999. https://doi.org/10.1109/60.815047
  46. C. Chang and B. S. Chen, "A nonlinear adaptive $H^{\infty}$ tracking control design in robotic systems via neural networks," IEEE Trans. Contr. Syst. Technol., Vol. 5, No. 1, pp. 23-29, 1997.
  47. M. C. Hwang, X. Hu, and Y. Shrivastava, "Adaptive $H^{\infty}$ neural network tracking controller for electrically driven manipulators," Proc. IEE-Control Theory Application, Vol. 145, No. 6, pp. 594-602, 1998. https://doi.org/10.1049/ip-cta:19982377
  48. J. A. Ball, P. Kachroo, and A. J. Krener, "$H^{\infty}$ tracking control for a class of nonlinear systems," IEEE Trans. Automatic Control, Vol. 44, No. 6, pp. 1202-1206, Jun. 1999. https://doi.org/10.1109/9.769374
  49. F. F. M. El-Sousy, "Hybrid recurrent cerebellar model articulation controller-based supervisory $H^{\infty}$ motion control system for permanent-magnet synchronous motor servo drive," IET-Electric Power Application, Vol. 5, No. 7, pp. 563-579, Aug. 2011. https://doi.org/10.1049/iet-epa.2010.0169
  50. F. F. M. El-Sousy, "Robust adaptive $H^{\infty}$ position control via a wavelet-neural-network for a DSP-based permanentmagnet synchronous motor servo drive system," IET-Electric Power Application, Vol. 4, No. 5, pp. 333-347, May 2010. https://doi.org/10.1049/iet-epa.2009.0156
  51. F. F. M. El-Sousy, "Hybrid $H^{\infty}$-based wavelet-neuralnetwork tracking control for permanent-magnet synchronous motor drives," IEEE Trans. Ind. Electron., Vol. 57, No. 9, pp. 3157-3166, Sep. 2010. https://doi.org/10.1109/TIE.2009.2038331
  52. F. F. M. El-Sousy, "Intelligent model-following position control for pmsm servo drives," in Proc. 6th WSEAS Int. Conf. Neural Netw., pp. 230-238, Jul. 2005.
  53. F. F. M. El-Sousy, "An intelligent model-following sliding-mode position controller for pmsm servo drives," 4th IEEE International Conference on Mechatronics, May 2007.

Cited by

  1. A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter vol.15, pp.6, 2015, https://doi.org/10.6113/JPE.2015.15.6.1547
  2. Adaptive hybrid control system using a recurrent RBFN-based self-evolving fuzzy-neural-network for PMSM servo drives vol.21, 2014, https://doi.org/10.1016/j.asoc.2014.02.027
  3. Real-Time Implementation of Brain Emotional Learning Developed for Digital Signal Processor-Based Interior Permanent Magnet Synchronous Motor Drive Systems vol.14, pp.1, 2014, https://doi.org/10.6113/JPE.2014.14.1.74
  4. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains vol.28, pp.7, 2017, https://doi.org/10.1109/TNNLS.2016.2521425
  5. Intelligent mixed H 2 /H ∞ adaptive tracking control system design using self-organizing recurrent fuzzy-wavelet-neural-network for uncertain two-axis motion control system vol.41, 2016, https://doi.org/10.1016/j.asoc.2015.12.009