• Title/Summary/Keyword: Rectifier Circuit

Search Result 442, Processing Time 0.024 seconds

Fault Diagnosis of Voltage-Fed Inverters Using Pattern Recognition Techniques for Induction Motor Drive (패턴인식 기법을 이용한 유도전동기 구동용 전압형 인버터의 고장진단)

  • Park, Jang-Hwan;Park, Sung-Moo;Lee, Dae-Jong;Kim, Dong-Hwa;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.75-84
    • /
    • 2005
  • Since an unexpected fault of induction motor drive systems can cause serious troubles in many industrial applications, which the technique is required to diagnose faults of a voltage-fed PWM inverter for induction motor drives. The considered fault types are rectifier diodes, switching devices and input terminals with open-circuit faults, and the signal for diagnosis is derived from motor currents. The magnitude of dq-current trajectory is used for the feature extraction of a fault and PCA LDA are applied to diagnose. Also, we show results with respect to the execution time because of the possibility to use that a diagnosis software is embedded in the controllers of medium and small size induction motors drive for real-time diagnosis. After we performed various simulations for the fault diagnosis of the inverter, the usefulness of proposed algerian was verified.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

A Novel Hybrid Converter with Wide Range of Soft-Switching and No Circulating Current for On-Board Chargers of Electric Vehicles

  • Tran, Van-Long;Tran, Dai-Duong;Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.143-151
    • /
    • 2018
  • In this paper, a novel hybrid configuration combining a phase-shift full-bridge (PSFB) and a half-bridge resonant LLC converter is proposed for the On-Board Charger of Electric Vehicles (EVs). In the proposed converter, the PSFB converter shares the lagging-leg switches with half-bridge resonant converter to achieve the wide ZVS range for the switches and to improve the efficiency. The output voltage is modulated by the effective-duty-cycle of the PSFB converter. The proposed converter employs an active reset circuit composed of an active switch and a diode for the transformer which makes it possible to achieve zero circulating current and the soft switching characteristic of the primary switches and rectifier diodes regardless of the load, thereby making the converter highly efficient and eliminating the reverse recovery problem of the diodes. In addition an optimal power sharing strategy is proposed to meet the specification of the charger and to optimize the efficiency of the converter. The operation principle the proposed converter and design considerations for high efficiency are presented. A 6.6 kW prototype converter is fabricated and tested to evaluate its performance at different conditions. The peak efficiency achieved with the proposed converter is 97.7%.

2MVA SSFG(Sag Swell Flicker Generator) Development for Actual Test of Custom Power Device (전력품질 향상기기의 실증시험을 위한 2MVA SSFG(Sag Swell Flicker Generator) 개발)

  • Kim H.J.;Chung Y.H.;Kwon G.H.;Park T.B.;Moon J.I.;Jeon Y.S.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.626-633
    • /
    • 2005
  • This paper proposes a new 2MVA SSFG(Sag Swell Flicker Generator) injecting voltage by using series inverter. The proposed SSFG composes series inverter, DC capacitor as energy storage, rectifier and voltage clamp circuit. This SSFG is designed to generate typical power disturbances, such as voltage sag/swell, over/under voltage and voltage flicker. Also it is designed to generate unexpected voltage phase jumping waveform by controlling the series inverter. In this paper, three kinds of control methods for the proposed 2MVA SSFG we investigated by PSIM simulation. Also typical voltage sag, swell, flicker waveforms are implemented by adopting effective control method.

A Study on the High Performance Slip Power Recovery System in Induction Motor (유도전동기의 고성능 슬립전력 회수방식에 대한 연구)

  • Park, Han-Ung;Park, Seong-Jin;An, Jin-U;Park, Jin-Gil;Kim, Cheol-U;Hwang, Myeong-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.431-439
    • /
    • 1999
  • Among the variable-speed AC motor drive systems, the static slip power recovery system has been widely adopted in large power drives because a high efficiency drive can be obtained by recovering the slip power to the AC line. Although many improvements have been made in this system, several problems also remain such as the need of transformer in inverter AC side, which results in limiting speed control range and increasing the losses, production of reactive power by the control of inverter firing angle, harmonics in line currents, and so on. This paper presents the novel high performance slip power recovery system using the boost converter and small size filter in the rotor circuit, which recovers slip power of a wound rotor induction machine to AC supply efficiently with the aid of the boost converter, in which most of the problems in conventional system can be solved. The speed can be controlled by the duty ratio of the converter switch, not by inverter firing angle. As a results, the proposed system can operate in high power factor and the harmonic currents caused by the inverter and rectifier can be considerably suppressed. The validity of the proposed system verified by demonstrating the good agreement in the simulation and experimental results.

  • PDF

A Study on the Inverter Type Neon Power Supply Using a Piezoelectric Transformer (압전 변압기를 이용한 인버터식 네온관용 변압기에 관한 연구)

  • 변재영;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.504-511
    • /
    • 2003
  • In this paper, inverter type neon power supply using a piezoelectric transformer is fabricated and its characteristic is investigated. Developed neon power supply is composed of basic circuit and blocks, such as rectifier part, frequency oscillation part and piezoelectric transformer and resonant half bridge inverters. In this paper for complement the low power limitation, piezoelectric transformer at parallel connected driving by inverter is studied for noon tubes system of high power. When piezoelectric transformer is connected with parallel, LC filter connection method with parallel and selection of inductance L and capacitor C of primary side is suggested for reduce unbalanced current at the terminal of each transformer. Piezoelectric transformers use piezoelectric ceramic devices. Thus it is wireless therefore it has high power density, high Isolation level, low loss, more light, and miniaturization. In addition, high voltage transfer ratio is expected because there is no leakage inductance. Also, it has economic merit that the electrical loss Is low because structure is simple, small and tighter weight.

Zero-Current Switching LLC Resonant Post-Regulator for Independent Multi-Output (독립된 다중출력을 위한 영전류 스위칭 LLC 공진형 Post-Regulator)

  • Cho, Sang-Ho;Yoon, Jong-Kyu;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • A new zero-current switching LLC resonant post-regulator for multi-output power system is proposed in this paper. A conventional LLC resonant converter employs extra non-isolated DC/DC converters to obtain tight-regulated multi-slave output voltages. Therefore, it has several serious problems such as a poor efficiency and high cost of production. The proposed post-regulator features low voltage and current stress across the output rectifier diodes and power switches. Moreover, the proposed post-regulator requires only one power switch instead of the bulky and expensive non-isolated DC/DC converter. Therefore, it features a simple structure and lower cost. Especially, since the proposed post-regulator can ensure the ZCS of all power switches, it has very desirable advantages such as more improved EMI characteristics and reduced switching losses. Finally, to confirm the operation, validity, and features of the proposed circuit, experimental results from a proposed zero-current LLC resonant post-regulator are presented.

The Design of SCR-based Whole-Chip ESD Protection with Dual-Direction and High Holding Voltage (양 방향성과 높은 홀딩전압을 갖는 사이리스터 기반 Whole-Chip ESD 보호회로)

  • Song, Bo-Bae;Han, Jung-Woo;Nam, Jong-Ho;Choi, Yong-Nam;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.378-384
    • /
    • 2013
  • We have investigated the electrical characteristics of SCR(Silicon Controlled Rectifier)-based ESD power clamp circuit with high holding voltage and dual-directional ESD protection cells for a whole-chip ESD protection. The measurement results indicate that the dimension of n/p-well and p-drift has a great effect on holding voltage (2V-5V). Also A dual-directional ESD protection circuit is designed for I/O ESD protection application. The trigger voltage and the holding voltage are measured to 5V and 3V respectively. In comparison with typical ESD protection schemes for whole-chip ESD protection, this ESD protection device can provide an effective protection for ICs against ESD pulses in the two opposite directions, so this design scheme for whole-chip ESD protection can be discharged in ESD-stress mode (PD, ND, PS, NS) as well as VDD-VSS mode. Finally, a whole-chip ESD protection can be applied to 2.5~3.3V VDD applications. The robustness of the novel ESD protection cells are measured to HBM 8kV and MM 400V.

A Study on T5 28W Fluorescent Lamp Ballast Using a Piezoelectric Transformer and One-chip Microcontroller (One Chip Microcontroller와 압전변압기를 이용한 T5 28W 형광등용 전자식 안정기에 관한 연구)

  • 황락훈;류주현;장은성;조문택;안익수;홍재일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2003
  • In this paper, T5 28-watt fluorescent lamp ballast using a piezoelectric transformer is fabricated and its characteristic is investigated. Developed electronic ballast is composed of basic circuits and blocks, such as rectifier part, active power factor corrector part, frequency oscillation part using microcontroller and feedback control, piezoelectric transformer and resonant half bridge inverters. The fabricated ballast uses to variable frequency methode in external so exciting that the frequency of piezoelectric transformer could be generated by voltage control oscillator using microcontroller(AT90S4433). The current of fluorescent lamp is detected by feedback control circuit. The signal of inverter output is received using Piezoelectric transformer, and then its output transmitted to fluorescent lamp. Traditional electromagnetic ballasts operated at 50-60Hz have been suffered from noticeable flicker, high loss, large crest factor and heavy weight. A new electronic ballast is operated at high frequency about 75kHz, and then Input power factor, distortion of total harmonic and lamp current crest factor are measured about 0.9!35, 12H and 1.5, respectively Accordingly, the traditional ballast is by fabricated electronic ballast using piezoelectric transformer and voltage control oscillator because of its lighter weight, high efficiency, economic merit and saving energy.

Input and Output Characteristics of Input Current Controlled Inverter Arc Welding Machine with High Efficiency (입력전류 제어형 고효율 인버터아크용접시스템의 입력 및 출력 특성연구)

  • 최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.358-369
    • /
    • 2000
  • Shielded metal arc welding machines with AC transformer have been widely used for thin-plate welding applications. Because of being bulky, heavy and of tap-changing property, so the SMAW's are changing to new power electronic circuits such as inverter circuit in order to reduce the system size and also to improve the welding performances at input output sides. The PWM inverter arc welding machine with diode rectifier has better output welding performances but it is has the plentiful harmonics and the lower input power factor. To solve these problems, input current-controlled scheme is considered for PWM inverter arc welding system, and then total input power factor is maintained to be more than 99%. Also a new combined control is proposed which can control both instantaeous welding output voltage and current under constant power condition, and as a result the variations of instantaneous current and voltage can be reduced to very narrow range in the V-I curve relationship, and hence the variance of welding current and voltage become so reduced. In addition the spatter generated during welding process is greatly reduced up to 70%. And the overall effiency can be improved up to 10%, which becomes higher when the load is lower.

  • PDF