Browse > Article
http://dx.doi.org/10.5370/JEET.2018.13.1.143

A Novel Hybrid Converter with Wide Range of Soft-Switching and No Circulating Current for On-Board Chargers of Electric Vehicles  

Tran, Van-Long (Dept. of Electrical Engineering, Soongsil University)
Tran, Dai-Duong (Dept. of Electrical Engineering, Soongsil University)
Doan, Van-Tuan (Dept. of Electrical Engineering, Soongsil University)
Kim, Ki-Young (Dept. of Electrical Engineering, Soongsil University)
Choi, Woojin (Dept. of Electrical Engineering, Soongsil University)
Publication Information
Journal of Electrical Engineering and Technology / v.13, no.1, 2018 , pp. 143-151 More about this Journal
Abstract
In this paper, a novel hybrid configuration combining a phase-shift full-bridge (PSFB) and a half-bridge resonant LLC converter is proposed for the On-Board Charger of Electric Vehicles (EVs). In the proposed converter, the PSFB converter shares the lagging-leg switches with half-bridge resonant converter to achieve the wide ZVS range for the switches and to improve the efficiency. The output voltage is modulated by the effective-duty-cycle of the PSFB converter. The proposed converter employs an active reset circuit composed of an active switch and a diode for the transformer which makes it possible to achieve zero circulating current and the soft switching characteristic of the primary switches and rectifier diodes regardless of the load, thereby making the converter highly efficient and eliminating the reverse recovery problem of the diodes. In addition an optimal power sharing strategy is proposed to meet the specification of the charger and to optimize the efficiency of the converter. The operation principle the proposed converter and design considerations for high efficiency are presented. A 6.6 kW prototype converter is fabricated and tested to evaluate its performance at different conditions. The peak efficiency achieved with the proposed converter is 97.7%.
Keywords
Hybrid converter; Lithium battery; On-board charger (OBC); Zero current switching (ZCS); Zero voltage switching (ZVS);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 R. L. Steigerwald, "A comparison of half-bridge resonant converter topologies," IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, Apr. 1998.
2 B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. van Wyk, "Optimal design methodology for LLC resonant converter," Proc. IEEE Applied Power Electron. Conf. and Expo., pp. 19-23, Mar. 2006.
3 T. Matysik, "The current and voltage phase shift regulation in resonant converters with integration control," IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1240-1242, Apr. 2007.   DOI
4 S. Zheng and D. Czarkowski, "Modeling and digital control of a phase-controlled series-parallel resonant converter," IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 707-715, Apr. 2007.   DOI
5 Najam ul Hassan, Yoon-Jae Kim, Byung-Moon Han, and Jun-Young Lee, "A Hybrid DC/DC Converter for EV OBCs Using Full-bridge and Resonant Converters with a Single Transformer," Journal of Power Electronics, vol. 17, no. 1, pp. 11-19, Jan. 2017.   DOI
6 W. S. Yu, J. S. Lai, W. H. Lai, and H. M. Wan, "Hybrid half-and full-bridge converter with high efciency and full soft-switching range," Proc. IEEE Energy Convers. Congr. and Expo., pp. 3080-3087, Sep. 2011.
7 Y. Chen, X. Pei, L. Peng, and Y. Kang, "A high performance dual output dc-dc converter combined the phase shift full bridge and LLC resonant half bridge with the shared lagging leg," Proc. Appl. Power Electron. Conf. Expo., 2010, pp. 1435-1440.
8 Van-Long Tran, Sunho Yu, Dai-Duong Tran, and Woojin Choi, "A Novel Hybrid Converter for 6.6 kW On Board Charger," ICPE 2015-ECCE Asia, pp. 1528-1534, Jun 2015.
9 Chuang Liu, Bin Gu, Jih-Sheng Lai, Mingyan Wang, Yanchao Ji, Guowei Cai, Zheng Zhao, Chien-Liang Chen, Cong Zheng, and Pengwei Sun, "High- Efficiency Hybrid Full-Bridge - Half-Bridge Converter With Shared ZVS Lagging Leg and Dual Outputs in Series," IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 849-861, Feb. 2013.   DOI
10 B. Gu, C. Y. Lin, B. Chen, J. Dominic, and J. S. Lai, "Zero-Voltage-Switching PWM Resonant Full- Bridge Converter With Minimized Circulating Losses and Minimal Voltage Stresses of Bridge Rectifiers for Electric Vehicle Battery Chargers," IEEE Transactions on Power Electronics, vol. 28, no. 10, pp. 4657-4667, Oct. 2013.   DOI
11 Jiashen Tian, Junxia Gao, and Yiming Zhang, "Design of a Novel Integrated L-C-T for PSFB ZVS Converters," Journal of Power Electronics, vol. 17, no. 4, pp. 905-913, Jul. 2017.   DOI
12 D. Gautam, F. Musavi, M. Edington, W. Eberle, and W.G. Dunford, "An automotive on-board 3.3kW battery charger for PHEV application," Vehicular Power and Propulsion Conf., pp. 3466-3474, Sept. 2011.
13 R. Redl, N. O. Sokal, and L. Balogh, "A novel softswitching full-bridge dc/dc converter: Analysis, design considerations, and experimental results at 1.5 kW, 100 kHz," IEEE Trans. Power Electron., vol. 6, no. 3, pp. 408-418, Jul. 1991.   DOI
14 K. Tae-Hoon, L. Seung-Jun and C. Woojin, "Design and control of the phase shift full bridge converter for the on-board battery charger of electric forklifts," Journal of Power Electronics, vol. 12, pp. 113-119, 2012.   DOI
15 Y. Jiang, Z. Chen and J. Pan, "Zero-voltage switching phase shift full-bridge step-up converter with integrated magnetic structure," IET Power Elec-tronics, vol. 3, no. 5, pp. 732-739, Sept. 2010.   DOI
16 I. H. Cho, K. M. Cho, J. W. Kim, and G. W. Moon, "A New Phase-Shifted Full-Bridge Converter With Maximum Duty Operation for Server Power System," IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3491-3500, Dec. 2011.   DOI
17 K. Chen and T. A. Stuart, "1.6 KW, 110 kHz dc/dc converter optimized for IGBT's," IEEE Trans. Power Electron., vol. 8, no. 1, pp. 18-25, Jan. 1993.   DOI
18 Y. C. Ren, M. Xu, J. Sun, and F. C. Lee, "A family of high power density unregulated bus converters," IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1045- 1054, Sep. 2005.
19 G. Cho, J. Sabate, G. Hua, and F. C. Lee, "Zero voltage and zero current switching full bridge PWM converter for high power applications," IEEE Trans. Power Electron., vol. 11, no. 4, pp. 622-628, Jul. 1996.   DOI