• 제목/요약/키워드: Rectifier

검색결과 1,315건 처리시간 0.03초

밸리-필 정류기의 전류 THD 개선 (Current THD Improvement of Valley-Fill Rectifier)

  • 이치환;최남열
    • 조명전기설비학회논문지
    • /
    • 제22권1호
    • /
    • pp.87-94
    • /
    • 2008
  • 본 연구는 밸리-필 정류기를 이용한 전류 THD 개선 방법을 제시한다. 제안된 회로는 밸리-필 정류기와 부스팅 인덕터를 결합한 구조를 가지며, AC/DC 변환과 PFC를 동시에 수행한다. PWM 스위칭에 따른 부스팅 효과로 입력전류를 제어하여 밸리-필 정류기의 특성을 개선한다. 이 결과는 낮은 전류 THD를 보장한다. 동작 모드와 전류 THD를 분석하고, 최적 부스팅 인덕터를 결정한다. 밸리-필 정류기와 부스팅 인덕터를 채용한 100[W] AC/DC 컨버터를 제작하였고, 시뮬레이션과 실험으로 제안된 방법의 타당성을 검증하였다.

A New High Efficiency Phase Shifted Full Bridge Converter for a Power Sustaining Module of Plasma Display Panel

  • Lee Woo-Jin;Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.45-51
    • /
    • 2006
  • A new high efficiency phase shifted full bridge (PSFB) converter for the power sustaining module of a plasma display panel (PDP) is proposed in this paper. The proposed converter employs a voltage doubler rectifier without an output inductor. Since it has no output inductor, the voltage stresses of the secondary rectifier diodes can be clamped at the output voltage level. No dissipative resistor-capacitor (RC) snubber for rectifier diodes is needed. Therefore, high efficiency, as well as, a low noise output voltage can be realized. Due to the elimination of the large output inductor, it features a simple structure, lower cost, smaller mass and lighter weight. Furthermore, the proposed converter has wide zero voltage switching (ZVS) ranges with low current stresses of the primary switches. Also the resonance between the leakage inductor of the transformer and the capacitor of the voltage doubler cell reduces the current stresses of the rectifier diodes. In this paper, operational principles, an analysis of the proposed converter and experimental results are presented.

전기 자동차 배터리 충전장치용 3상 3스위치 전류형 정류기의 전류 왜곡 감소를 위한 펄스 폭 변조 스위칭 기법 (Reduced Current Distortion of Three-Phase Three-Switch Buck-Type Rectifier using Carrier Based PWM in EV Traction Battery Charging Systems)

  • 채범석;강태원;강다현;서용석
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.375-387
    • /
    • 2015
  • This study investigates an economic and highly efficient power-converter topology and its modulation scheme for 60 kW rapid EV charger system. The target system is a three-phase three-switch buck-type rectifier topology. A new carrier-based PWM scheme, which is characterized by simple implementation using logic gates, is introduced in this paper. This PWM scheme replaces the diode rectifier equivalent switching state with an active switching state to produce the same effective current flowing path. As a result, the distortion of input current during the polarity reversal of capacitor line voltage can be mitigated. The proposed modulation technique is confirmed through simulation verification. The proposed modulation technique and its implementation scheme can expand the operation range of the three-phase three-switch buck-type rectifier with high-quality AC input and capacitor ripple current.

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

  • Cao, Guoen;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.815-826
    • /
    • 2014
  • An improved bridgeless interleaved boost power factor correction (PFC) rectifier to improve power efficiency and component utilization is proposed in this study. With combined conventional bridgeless PFC circuit and interleaved technology, the proposed rectifier consists of two interleaved and magnetic inter-coupling boost bridgeless converter cells. Each cell operates alternatively in the critical conduction mode, which can achieve the soft-switching characteristics of the switches and increase power capacity. Auxiliary blocking diodes are employed to eliminate undesired circulating loops and reduce current-sensing noise, which are among the serious drawbacks of a dual-boost PFC rectifier. Magnetic component utilization is improved by symmetrically coupling two inductors on a unique core, which can achieve independence from each other based on the auxiliary diodes. Through the interleaved approach, each switch can operate in the whole line cycle. A simple control scheme is employed in the circuit by using a conventional interleaved controller. The operation principle and theoretical analysis of the converter are presented. A 600 W experimental prototype is built to verify the theoretical analysis and feasibility of the proposed rectifier. System efficiency reaches 97.3% with low total harmonic distortion at full load.

DC 배전용 반도체 변압기를 위한 직렬 연결된 플라잉 커패시터 멀티-레벨 정류기의 모델 예측 제어 방법 (A Model Predictive Control Method of a Cascaded Flying Capacitor Multi-level Rectifier for Solid State Transformer for DC Distribution System)

  • 김시환;장영혁;김준성;김래영
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.359-365
    • /
    • 2018
  • This study introduces a model predictive control method for controlling a cascaded flying capacitor multilevel rectifier used as an AC-DC rectifier of a solid-state transformer for DC distribution systems. The proposed method reduces the number of states that need to be considered in model predictive control by separately controlling input current, output DC link voltage, and flying capacitor voltage. Thus, calculation time is shortened to facilitate the level expansion of the cascaded flying capacitor multilevel rectifier. The selection of weighting factors did not present difficulties because the weighting factors in the cost function of the conventional model predictive control are not used. The effectiveness of the proposed method is verified through computer simulation using powersim and experiment.

3상 비엔나 정류기 입력 전압 센서리스 제어 (Input Voltage Sensorless Control for 3 Phase Vienna Rectifier)

  • 이상리;김학원;조관열;황순상;윤병철
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.71-79
    • /
    • 2014
  • In this paper, a new grid voltage estimation algorithm without voltage sensors is proposed for the three-phase vienna rectifier. Generally, input voltage sensor circuits increase size and cost of the PWM rectifier In order to reduce the cost and size and in order to increase reliability from the electrical noise, grid voltage estimation scheme without input voltage sensor is highly required. In this paper, the grid voltage estimation algorithm is proposed by a simple MRAS(Model Reference Adaptive System) observer without input voltage sensors. The validity of the proposed method is proven by simulation and experiment on the three-phase vienna rectifier system.

선박 평형수 처리용 대전류 인버터 방식의 정류기 설계 (Design of High-Current Inverter-type Rectifier for Electrolytic Disinfection of Ship Ballast Water)

  • 조원우;김진영;김인동;노의철;고강우;배상범
    • 전력전자학회논문지
    • /
    • 제16권5호
    • /
    • pp.430-439
    • /
    • 2011
  • 세계화와 더불어 수출 입 물동량이 크게 늘어남에 따라 세계를 왕래하는 선박의 평형수(Ballast water) 속에 존재하는 해양 유기체에 의한 생태계의 파괴가 큰 문제가 되고 있다. 이와 같은 문제를 해결하기 위해 국제규약은 선박의 평형수를 배출할 때는 반드시 미생물을 제거한 다음 바다로 배출할 것을 요구하고 있다. 이는 위한 염소발생용 전기분해 수 처리 시스템을 위해 우수한 성능을 가지는 저전압 대전류 방식의 정류기의 필요성이 커지고 있다. 본 논문에서는 선박의 평형수 처리를 위한 해수 전기분해용 정류기에 적합한 저전압 대전류 정류기 방식을 제안하고, 정류기 전력회로 설계와 제어기 설계에 필요한 실제적인 설계 가이드라인을 제시하고자 한다.

DC 정류기 부분방전 신호검출을 위한 SHF 센서의 성능평가 (Performance Evaluation of SHF Sensor for Partial Discharge Signal Detection on DC Rectifier)

  • 정호성;박영;나희승;장순호
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1056-1060
    • /
    • 2012
  • Online monitoring system is becoming an essential element of railway traction system for utilized to condition based malignance management and various techniques currently employed in railway traction system. Among the various techniques, it is efficient to detect partial discharge signals by electromagnetic wave detection in order to detect insulation fault of rectifier. Although VHF (Very High Frequency), UHF (Ultra High Frequency) sensors were adopted to detect partial discharge of power facilities, due to characteristics of urban railway, excessive noise occurs from 500 MHz to 1.5 GHz on UHF bandwidth. In this paper a new measurement system able to monitoring the conditions of power facilities on DC substation in metro was studied and set up. The system uses UHF sensors to measure the partial discharge of the rectifier due to electric faulting and dielectric breakdown. Comparison and estimation for performance of SHF sensor which had devised to detect partial discharge signal of urban railway rectifier has conducted. In order to estimate performance of SHF sensor, we have compared the sensor with existing UHF sensor on sensitivity upon frequency bandwidth generated by pulse generator, and also we have verified performance of the SHF sensor by detection results of partial discharge signal from urban railway rectifier.

Global Sliding Mode Control based on a Hyperbolic Tangent Function for Matrix Rectifier

  • Hu, Zhanhu;Hu, Wang;Wang, Zhiping;Mao, Yunshou;Hei, Chenyang
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.991-1003
    • /
    • 2017
  • The conventional sliding mode control (CSMC) has a number of problems. It may cause dc output voltage ripple and it cannot guarantee the robustness of the whole system for a matrix rectifier (MR). Furthermore, the existence of a filter can decrease the input power factor (IPF). Therefore, a novel global sliding mode control (GSMC) based on a hyperbolic tangent function with IPF compensation for MRs is proposed in this paper. Firstly, due to the reachability and existence of the sliding mode, the condition of the matrix rectifier's robustness and chattering elimination is derived. Secondly, a global switching function is designed and the determination of the transient operation status is given. Then a SMC compensation strategy based on a DQ transformation model is applied to compensate the decreasing IPF. Finally, simulations and experiments are carried out to verify the correctness and effectiveness of the control algorithm. The obtained results show that compared with CSMC, applying the proposed GSMC based on a hyperbolic tangent function for matrix rectifiers can achieve a ripple-free output voltage with a unity IPF. In addition, the rectifier has an excellent robust performance at all times.

Novel Average Value Model for Faulty Three-Phase Diode Rectifier Bridges

  • Rahnama, Mehdi;Vahedi, Abolfazl;Alikhani, Arta Mohammad;Nahid-Mobarakeh, Babak;Takorabet, Noureddine
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.288-295
    • /
    • 2019
  • Rectifiers are widely used in industrial applications. Although detailed models of rectifiers are usually used to evaluate their performance, they are complex and time-consuming. Therefore, the Average Value Model (AVM) has been introduced to meet the demand for a simple and accurate model. This type of rectifier modeling can be used to simplify the simulations of large systems. The AVM of diode rectifiers has been an area of interest for many electrical engineers. However, healthy diode rectifiers are only considered for average value modeling. By contrast, faults occur frequently on diodes, which eventually cause the diodes to open-circuit. Therefore, it is essential to model bridge rectifiers under this faulty condition. Indeed, conventional AVMs are not appropriate or accurate for faulty rectifiers. In addition, they are significantly different in modeling. In this paper, a novel application of the parametric average value of a three-phase line-commutated rectifier is proposed in which one diode of the rectifier is considered open-circuited. In order to evaluate the proposed AVM, it is compared with experimental and simulation results for the application of a brushless synchronous generator field. The results clearly demonstrate the accuracy of the proposed model.