• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.025 seconds

Development of Wine Recommendation App Using Artificial Intelligence-Based Chatbot Service (인공지능 기반 챗봇 서비스를 활용한 와인 추천 앱개발)

  • Chung, HaeKyung;Na, Jungjo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.93-99
    • /
    • 2019
  • It is a wine recommendation application service designed for people who sometimes drink wine but lack information and have no place to recommend. This study is to develop UI display design method of wine recommendation service using chatbot. The research method was a case study on Korean wine market, a case study on artificial intelligence market, SWOT analysis of wine-related chatbots, and a competitor analysis of related industries. In addition, surveys and in-depth interviews examined the level of interest and understanding of chatbots, and what kind of chatbots they had encountered and what requirements and goals they faced. After grasping the needs and requirements of users, we created a service concept sheet according to them and produced an application UI design that users can use most easily. Therefore, this study is meaningful in that it proposes a UI design that can search wine information more sophisticated and convenient than face-to-face communication through artificial intelligence service called chatbot and recommend wines that match the taste.

RFM based Incremental Frequent Patterns mining Method for Recommendation in e-Commerce (전자상거래 추천을 위한 RFM기반의 점진적 빈발 패턴 마이닝 기법)

  • Cho, Young Sung;Moon, Song Chul;Ryu, Keun Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.135-137
    • /
    • 2012
  • A existing recommedation system using association rules has the problem, which is suffered from inefficiency by reprocessing of the data which have already been processed in the incremental data environment in which new data are added persistently. We propose the recommendation technique using incremental frequent pattern mining based on RFM in e-commerce. The proposed can extract frequent items and create association rules using frequent patterns mining rapidly when new data are added persistently.

  • PDF

POI Recommendation Method Based on Multi-Source Information Fusion Using Deep Learning in Location-Based Social Networks

  • Sun, Liqiang
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.352-368
    • /
    • 2021
  • Sign-in point of interest (POI) are extremely sparse in location-based social networks, hindering recommendation systems from capturing users' deep-level preferences. To solve this problem, we propose a content-aware POI recommendation algorithm based on a convolutional neural network. First, using convolutional neural networks to process comment text information, we model location POI and user latent factors. Subsequently, the objective function is constructed by fusing users' geographical information and obtaining the emotional category information. In addition, the objective function comprises matrix decomposition and maximisation of the probability objective function. Finally, we solve the objective function efficiently. The prediction rate and F1 value on the Instagram-NewYork dataset are 78.32% and 76.37%, respectively, and those on the Instagram-Chicago dataset are 85.16% and 83.29%, respectively. Comparative experiments show that the proposed method can obtain a higher precision rate than several other newer recommended methods.

Evaluations of Museum Recommender System Based on Different Visitor Trip Times

  • Sanpechuda, Taweesak;Kovavisaruch, La-or
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.131-136
    • /
    • 2022
  • The recommendation system applied in museums has been widely adopted owing to its advanced technology. However, it is unclear which recommendation is suitable for indoor museum guidance. This study evaluated a recommender system based on social-filtering and statistical methods applied to actual museum databases. We evaluated both methods using two different datasets. Statistical methods use collective data, whereas social methods use individual data. The results showed that both methods could provide significantly better results than random methods. However, we found that the trip time length and the dataset's sizes affect the performance of both methods. The social-filtering method provides better performance for long trip periods and includes more complex calculations, whereas the statistical method provides better performance for short trip periods. The critical points are defined to indicate the trip time for which the performances of both methods are equal.

Collaborative filtering-based recommendation algorithm research (협업 필터링 기반 추천 알고리즘 연구)

  • Lee, Hyun-Chang;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.655-656
    • /
    • 2022
  • Among the analysis methods for a recommendation system, collaborative filtering is a major representative method in a recommendation system based on data analysis. A general usage method is a technique of finding a common pattern by using evaluation data of users for various items, and recommending a preferred item for a specific user. Therefore, in this paper, various algorithms were used to measure the index, and an algorithm suitable for prediction of user preference was found and presented.

  • PDF

Collaborative Filtering in Recommendation Systems: Idea and Evaluation (추천 시스템의 협업 필터링: 아이디어와 평가)

  • Kim, Joosung (James)
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.716-719
    • /
    • 2019
  • Collaborative filtering has been used frequently as a recommendation system. To reduce the errors on predicting the ratings that may be given by the user, we propose a new aggregation method to do so. We used a real-world dataset MovieLens to compare our proposed method from previously existing methods, and accordingly to the results, ours was more accurate.

Data BILuring Method for Solving Sparseness Problem in Collaborative Filtering (협동적 여과에서의 희소성 문제 해결을 위한 데이타 블러링 기법)

  • Kim, Hyung-Il;Kim, Jun-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.542-553
    • /
    • 2005
  • Recommendation systems analyze user preferences and recommend items to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper we propose a method of integrating additional feature information of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first fill in unknown preference values by using the probability distribution of feature values, then generate the top-N recommendations by applying collaborative filtering on the modified data. We call this method of filling unknown preference values as data blurring. Several experimental results that show the effectiveness of the proposed method are also presented.

A Study of Recommendation System Using Association Rule and Weighted Preference (연관규칙과 가중 선호도를 이용한 추천시스템 연구)

  • Moon, Song Chul;Cho, Young-Sung
    • Journal of Information Technology Services
    • /
    • v.13 no.3
    • /
    • pp.309-321
    • /
    • 2014
  • Recently, due to the advent of ubiquitous computing and the spread of intelligent portable device such as smart phone, iPad and PDA has been amplified, a variety of services and the amount of information has also increased fastly. It is becoming a part of our common life style that the demands for enjoying the wireless internet are increasing anytime or anyplace without any restriction of time and place. And also, the demands for e-commerce and many different items on e-commerce and interesting of associated items are increasing. Existing collaborative filtering (CF), explicit method, can not only reflect exact attributes of item, but also still has the problem of sparsity and scalability, though it has been practically used to improve these defects. In this paper, using a implicit method without onerous question and answer to the users, not used user's profile for rating to reduce customers' searching effort to find out the items with high purchasability, it is necessary for us to analyse the segmentation of customer and item based on customer data and purchase history data, which is able to reflect the attributes of the item in order to improve the accuracy of recommendation. We propose the method of recommendation system using association rule and weighted preference so as to consider many different items on e-commerce and to refect the profit/weight/importance of attributed of a item. To verify improved performance of proposing system, we make experiments with dataset collected in a cosmetic internet shopping mall.

Recommendations Based on Listwise Learning-to-Rank by Incorporating Social Information

  • Fang, Chen;Zhang, Hengwei;Zhang, Ming;Wang, Jindong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.109-134
    • /
    • 2018
  • Collaborative Filtering (CF) is widely used in recommendation field, which can be divided into rating-based CF and learning-to-rank based CF. Although many methods have been proposed based on these two kinds of CF, there still be room for improvement. Firstly, the data sparsity problem still remains a big challenge for CF algorithms. Secondly, the malicious rating given by some illegal users may affect the recommendation accuracy. Existing CF algorithms seldom took both of the two observations into consideration. In this paper, we propose a recommendation method based on listwise learning-to-rank by incorporating users' social information. By taking both ratings and order of items into consideration, the Plackett-Luce model is presented to find more accurate similar users. In order to alleviate the data sparsity problem, the improved matrix factorization model by integrating the influence of similar users is proposed to predict the rating. On the basis of exploring the trust relationship between users according to their social information, a listwise learning-to-rank algorithm is proposed to learn an optimal ranking model, which can output the recommendation list more consistent with the user preference. Comprehensive experiments conducted on two public real-world datasets show that our approach not only achieves high recommendation accuracy in relatively short runtime, but also is able to reduce the impact of malicious ratings.

A Study of IPTV-VOD Program Recommendation System using Collaborative Filtering (협업 필터링을 이용한 IPTV-VOD 프로그램 추천 시스템에 대한 연구)

  • Sun, Chul-Yong;Kang, Yong-Jin;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1453-1462
    • /
    • 2010
  • In this paper, a new program recommendation system is proposed to recommend user preferred VOD program in IPTV environment. A proposed system is implemented with collaborative filtering method. For a user profile which describes user program preference, a program preference, sub-genre preference, and US(user similarity) weight of the user neighborhood is averaged and updated every week. In order to evaluate system performance, real 24-weeks cable TV watching data provided by Nilson Research Corp. are modified to fit for IPTV broadcasting environment and the simulation result shows quite comparative quality of recommendation. The experimental results optimum performance when user similarity based weighting, five person per group and five recommendation programs are used.