• Title/Summary/Keyword: Recognition and Detection

Search Result 2,263, Processing Time 0.036 seconds

A Study on Korean Isolated Word Speech Detection and Recognition using Wavelet Feature Parameter (Wavelet 특징 파라미터를 이용한 한국어 고립 단어 음성 검출 및 인식에 관한 연구)

  • Lee, Jun-Hwan;Lee, Sang-Beom
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2238-2245
    • /
    • 2000
  • In this papr, eatue parameters, extracted using Wavelet transform for Korean isolated worked speech, are sued for speech detection and recognition feature. As a result of the speech detection, it is shown that it produces more exact detection result than eh method of using energy and zero-crossing rate on speech boundary. Also, as a result of the method with which the feature parameter of MFCC, which is applied to he recognition, it is shown that the result is equal to the result of the feature parameter of MFCC using FFT in speech recognition. So, it has been verified the usefulness of feature parameters using Wavelet transform for speech analysis and recognition.

  • PDF

Development of Feature Extraction Algorithm for Finger Vein Recognition (지정맥 인식을 위한 특징 검출 알고리즘 개발)

  • Kim, Taehoon;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.9
    • /
    • pp.345-350
    • /
    • 2018
  • This study is an algorithm for detecting vein pattern features important for finger vein recognition. The feature detection algorithm is important because it greatly affects recognition results in pattern recognition. The recognition rate is degraded because the reference is changed according to the finger position change. In addition, the image obtained by irradiating the finger with infrared light is difficult to separate the image background and the blood vessel pattern, and the detection time is increased because the image preprocessing process is performed. For this purpose, the presented algorithm can be performed without image preprocessing, and the detection time can be reduced. SWDA (Down Slope Trace Waveform) algorithm is applied to the finger vein images to detect the fingertip position and vein pattern. Because of the low infrared transmittance, relatively dark vein images can be detected with minimal detection error. In addition, the fingertip position can be used as a reference in the classification stage to compensate the decrease in the recognition rate. If we apply algorithms proposed to various recognition fields such as palm and wrist, it is expected that it will contribute to improvement of biometric feature detection accuracy and reduction of recognition performance time.

Research on Intelligent Anomaly Detection System Based on Real-Time Unstructured Object Recognition Technique (실시간 비정형객체 인식 기법 기반 지능형 이상 탐지 시스템에 관한 연구)

  • Lee, Seok Chang;Kim, Young Hyun;Kang, Soo Kyung;Park, Myung Hye
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.546-557
    • /
    • 2022
  • Recently, the demand to interpret image data with artificial intelligence in various fields is rapidly increasing. Object recognition and detection techniques using deep learning are mainly used, and video integration analysis to determine unstructured object recognition is a particularly important problem. In the case of natural disasters or social disasters, there is a limit to the object recognition structure alone because it has an unstructured shape. In this paper, we propose intelligent video integration analysis system that can recognize unstructured objects based on video turning point and object detection. We also introduce a method to apply and evaluate object recognition using virtual augmented images from 2D to 3D through GAN.

Correction of Signboard Distortion by Vertical Stroke Estimation

  • Lim, Jun Sik;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2312-2325
    • /
    • 2013
  • In this paper, we propose a preprocessing method that it is to correct the distortion of text area in Korean signboard images as a preprocessing step to improve character recognition. Distorted perspective in recognizing of Korean signboard text may cause of the low recognition rate. The proposed method consists of four main steps and eight sub-steps: main step consists of potential vertical components detection, vertical components detection, text-boundary estimation and distortion correction. First, potential vertical line components detection consists of four steps, including edge detection for each connected component, pixel distance normalization in the edge, dominant-point detection in the edge and removal of horizontal components. Second, vertical line components detection is composed of removal of diagonal components and extraction of vertical line components. Third, the outline estimation step is composed of the left and right boundary line detection. Finally, distortion of the text image is corrected by bilinear transformation based on the estimated outline. We compared the changes in recognition rates of OCR before and after applying the proposed algorithm. The recognition rate of the distortion corrected signboard images is 29.63% and 21.9% higher at the character and the text unit than those of the original images.

Robust Sign Recognition System at Subway Stations Using Verification Knowledge

  • Lee, Dongjin;Yoon, Hosub;Chung, Myung-Ae;Kim, Jaehong
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.696-703
    • /
    • 2014
  • In this paper, we present a walking guidance system for the visually impaired for use at subway stations. This system, which is based on environmental knowledge, automatically detects and recognizes both exit numbers and arrow signs from natural outdoor scenes. The visually impaired can, therefore, utilize the system to find their own way (for example, using exit numbers and the directions provided) through a subway station. The proposed walking guidance system consists mainly of three stages: (a) sign detection using the MCT-based AdaBoost technique, (b) sign recognition using support vector machines and hidden Markov models, and (c) three verification techniques to discriminate between signs and non-signs. The experimental results indicate that our sign recognition system has a high performance with a detection rate of 98%, a recognition rate of 99.5%, and a false-positive error rate of 0.152.

A Study on the Application of Object Detection Method in Construction Site through Real Case Analysis (사례분석을 통한 객체검출 기술의 건설현장 적용 방안에 관한 연구)

  • Lee, Kiseok;Kang, Sungwon;Shin, Yoonseok
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.269-279
    • /
    • 2022
  • Purpose: The purpose of this study is to develop a deep learning-based personal protective equipment detection model for disaster prevention at construction sites, and to apply it to actual construction sites and to analyze the results. Method: In the method of conducting this study, the dataset on the real environment was constructed and the developed personal protective equipment(PPE) detection model was applied. The PPE detection model mainly consists of worker detection and PPE classification model.The worker detection model uses a deep learning-based algorithm to build a dataset obtained from the actual field to learn and detect workers, and the PPE classification model applies the PPE detection algorithm learned from the worker detection area extracted from the work detection model. For verification of the proposed model, experimental results were derived from data obtained from three construction sites. Results: The application of the PPE recognition model to construction site brings up the problems related to mis-recognition and non-recognition. Conclusions: The analysis outcomes were produced to apply the object recognition technology to a construction site, and the need for follow-up research was suggested through representative cases of worker recognition and non-recognition, and mis-recognition of personal protective equipment.

Overview of Image-based Object Recognition AI technology for Autonomous Vehicles (자율주행 차량 영상 기반 객체 인식 인공지능 기술 현황)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1117-1123
    • /
    • 2021
  • Object recognition is to identify the location and class of a specific object by analyzing the given image when a specific image is input. One of the fields in which object recognition technology is actively applied in recent years is autonomous vehicles, and this paper describes the trend of image-based object recognition artificial intelligence technology in autonomous vehicles. The image-based object detection algorithm has recently been narrowed down to two methods (a single-step detection method and a two-step detection method), and we will analyze and organize them around this. The advantages and disadvantages of the two detection methods are analyzed and presented, and the YOLO/SSD algorithm belonging to the single-step detection method and the R-CNN/Faster R-CNN algorithm belonging to the two-step detection method are analyzed and described. This will allow the algorithms suitable for each object recognition application required for autonomous driving to be selectively selected and R&D.

Traffic Signal Detection and Recognition Using a Color Segmentation in a HSI Color Model (HSI 색상 모델에서 색상 분할을 이용한 교통 신호등 검출과 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.92-98
    • /
    • 2022
  • This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.

Mongolian Car Plate Recognition using Neural Network

  • Ragchaabazar, Bud;Kim, SooHyung;Na, In Seop
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.20-26
    • /
    • 2013
  • This paper presents an approach to Mongolian car plate recognition using artificial neural network. Our proposed method consists of two steps: detection and recognition. In detection step, we implement Flood fill algorithm. In recognition step we proceed to segment the plate for each Cyrillic character, and use an Artificial Neural Network (ANN) machine - learning algorithm to recognize the character. We have learned the theory of ANN and implemented it without using any library. A total of 150 vehicles images obtained from community entrance gates have been tested. The recognition algorithm shows an accuracy rate of 89.75%.

  • PDF

Multi-view Human Recognition based on Face and Gait Features Detection

  • Nguyen, Anh Viet;Yu, He Xiao;Shin, Jae-Ho;Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1676-1687
    • /
    • 2008
  • In this paper, we proposed a new multi-view human recognition method based on face and gait features detection algorithm. For getting the position of moving object, we used the different of two consecutive frames. And then, base on the extracted object, the first important characteristic, walking direction, will be determined by using the contour of head and shoulder region. If this individual appears in camera with frontal direction, we will use the face features for recognition. The face detection technique is based on the combination of skin color and Haar-like feature whereas eigen-images and PCA are used in the recognition stage. In the other case, if the walking direction is frontal view, gait features will be used. To evaluate the effect of this proposed and compare with another method, we also present some simulation results which are performed in indoor and outdoor environment. Experimental result shows that the proposed algorithm has better recognition efficiency than the conventional sing]e view recognition method.

  • PDF