• 제목/요약/키워드: Rechargeable lithium batteries

검색결과 141건 처리시간 0.027초

고상법에 의한 $Li_{1+x}Mn_2O_4$ ($0\leqx\leq0.075$) 의 결정구조와 전기화학적 특성 (Electrochemical Properties and Crystal Structure of $Li_{1+x}Mn_2O_4$($0\leqx\leq0.075$) Synthesized at Solid State Method)

  • 박종광;고건문;임성훈;황종선;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제14권5호
    • /
    • pp.383-390
    • /
    • 2001
  • We have investigated the L $i_{1+x}$M $n_2$ $O_4$system as a cathode material for lithium rechargeable batteries. To improve the cycle performance of spinel LiM $n_2$ $O_4$ as the cathode of 4V class lithium secondary batteries, spinel phase L $i_{1+x}$M $n_2$ $O_4$(x=0, 0.025, 0.05, 0.075) was prepared at 75$0^{\circ}C$ for 48h. The preparation of L $i_{1+x}$M $n_2$ $O_4$ from L $i_2$ $O_3$ and Mn $O_2$ under air is studied. The compounds were synthesized by using solid-state reaction. Structural refinements were carried out with a Rietveld-refinement program. Electrochemical properties were examined using the Li/L $i_{1+x}$M $n_2$ $O_4$ cells. The capacity of L $i_{1+x}$M $n_2$ $O_4$ decreases with increases lithium content, while the cycle life improves. The initial discharge capacity are 118mAh/g and 116mAh/g for LiM $n_2$ $O_4$ decreases with increases lithium content, while the cycle life improves. The initial discharge capacity are 118mAh/g and 116mAh/g for LiM $n_2$ $O_4$ and L $i_{1.025}$M $n_2$ $O_4$, respectively.pectively.

  • PDF

Li-doped 탄화된 페놀레진 전극의 성질과 구조 (Properties and structure of Li-doped carbonized phenol resin electrode)

  • 김한주;박종은;이홍기;박수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.965-967
    • /
    • 1999
  • In order to solve to instability in air and to format dentrite, we used carbonized phenol resin electrode which is amorphous carbon. The structure and properties of deeply Li-doped carbonized phenol resin have been investigated in association with their utilization as electrodes in rechargeable batteries. Resol type phenol resin used as starting material. The doped lithium was found neither in metallic nor in ionic states even in the most deeply doped state($C_{2.2}$Li stage). It has also been confirmed that the carbonized phenol resin electrode has a large capacity with good stability and reversibility. These results strongly suggest that the carbonized phenol resin can make an excellent anode material for secondary batteries. Finally, we discuss that the carbonized phenol resin doped up to the $C_2Li$ stage can exhibit an energy density per volume as high as lithium metal. We know that carbonized phenol resin can used as cathode as well as anode by cyclic voltammogram.

  • PDF

Enhancement of Cycle Performance of Lithium Secondary Batteries Based on Nano-Composite Coated PVdF Membrane

  • Ryou, Myung-Hyun;Han, Young-Dal;Lee, Je-Nam;Lee, Dong-Jin;Park, Jung-Ki
    • 전기화학회지
    • /
    • 제11권3호
    • /
    • pp.190-196
    • /
    • 2008
  • The multilayered membrane for lithium rechargeable batteries based on poly (vinylidene fluoride) (PVdF) is prepared with the coated layer containing nano-sized filler. The prepared membranes were subjected to studies of mechanical strength, morphology, interfacial stability, impedance spectroscopy, ionic conductivity, and cycle performance. The localized inorganic filler in the PVdF composite membrane rendered mechanical strength much reduced because of its low stretching ratio and it results in around half value of the mechanical strength of highly stretched PVdF membrane. In order to achieve high ionic conductivity and interfacial stability without sacrificing high mechanical strength, coating layer with nano-filler was newly introduced to PVdF membrane. The ionic conductivity of the coated membrane was 1.03 mS/cm, and the interface between the coating layer and PVdF membrane was stable when the membrane was immersed into liquid electrolyte. The discharge capacity of the cell based on nano-filler coated PVdF membrane was around 91% of the initial discharge capacity after 250 cycles, which is an improvement in cycle performance compared to the case for the non-coated PVdF membrane.

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries

  • Park, Junsoo;Lee, Jae-Won
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.15-20
    • /
    • 2015
  • The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.

반응성 r.f. 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성 평가 (Fabrication and electrochemical characterization of amorphous vanadium oxide thin films for thin film micro-battery by reactive r.f. sputtering)

  • 전은정;신영화;남상철;윤영수;조원일
    • 한국진공학회지
    • /
    • 제9권1호
    • /
    • pp.42-47
    • /
    • 2000
  • The amorphous vanadium oxide thin films for thin-film rechargeable lithium batteries were fabricated by r.f. reactive sputtering at room temperature. As the experimental parameter, oxygen partial pressure was varied during sputtering. At high oxygen partial pressures(>30%), the as-deposited films, constant current charge/discharge characteristics were carried out in 1M $LiPF_6$, EC:DMC+1:1 liquid electrolyte using lithium metal as anode. The specific capacity of amorphous $V_2O_5$ after 200cycles of operation at room temperature was higher compared to crystalline $V_2O_5$. The amorphous vanadium oxide thin film and crystalline film showed about 60$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$ and about 38$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$, respectively. These results suggest that the battery capacity of the thin film vanadium oxide cathode strongly depends on the crystallinity.

  • PDF

Structural Evolution of Layered $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ upon Electrochemical Cycling in a Li Rechargeable Battery

  • 홍지현;서동화;김성욱;권혁조;박영욱;강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.37.2-37.2
    • /
    • 2010
  • Recently $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ has been consistently examined and investigated by scientists because of its high lithium storage capacity, which exceeds beyond the conventional theoretical capacity based on conventional chemical concepts. Consequently, $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ is considered as one of the most promising cathode candidates for next generation in Li rechargeable batteries. Yet the mechanism and the origin of the overcapacity have not been clarified. Previously, many authors have demonstrated simultaneous oxygen evolution during the first delithiation. However, it may only explain the high capacity of the first charge process, and not of the subsequent cycles. In this work, we report a clarified interpretation of the structural evolution of $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$, which is the key element in understanding its anomalously high capacity. We identify how the structural evolution of $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ occurs upon the electrochemical cycling through careful study of electrochemical profiles, ex-situ X-ray diffraction (XRD), HR-TEM, Raman spectroscopy, and first principles calculation. Moreover, we successfully separated the structural change at subsequent cycles (mainly cation rearrangement) from the first charge process (mainly oxygen evolution with Li extraction) by intentionally synthesizing sample with large particle size. Consequently, the intermediate states of structural evolution could be well resolved. All observations made through various tools lead to the result that spinel-like cation arrangement and lithium environment are created and embedded in layered framework during repeated electrochemical cycling.

  • PDF

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun;Lee, Suhyun;Kim, Kun Woo;Son, Jungman;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.424-430
    • /
    • 2021
  • The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

리튬의 제련기술 (Extractive Metallurgy of Lithium)

  • 손호상
    • 자원리싸이클링
    • /
    • 제31권3호
    • /
    • pp.3-15
    • /
    • 2022
  • 리튬은 가장 가벼운 금속으로 주기율표상의 첫 번째 금속이다. 리튬은 유기 화합물부터 알루미늄이나 마그네슘의 합금원소는 물론 전자기기나 전기 자동차용 리튬이온 이차전지의 양극재 등 다양한 용도로 사용되고 있다. 따라서 리튬은 우리 일상생활에서 필수적인 금속이다. 전 세계 리튬의 사용량은 2000년도의 약 14,000 톤에서 2020년에는 약 82,200 톤으로 계속 증가하였다. 그러나 리튬은 지각 중 원소 존재도가 32 번째인 대표적인 희소금속이다. 본 연구에서는 생산량 및 용도와 리튬 제련기술에 대해 고찰하였다. 리튬은 자원이 종류에 따라 다양한 제련법으로 추출된다. 이러한 다양한 리튬의 제련기술은 리튬 2차 자원으로부터 리튬을 추출하는 새로운 재활용 프로세스의 개발에 필수적으로 필요하다.

주석-니켈 나노입자 복합체의 리튬 이차전지 음전극 특성 (Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries)

  • 김광만;강근영;최민규;이영기
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.846-850
    • /
    • 2011
  • 주석과 니켈 나노입자를 함량별로 혼합하여 습식법으로 리튬 이차전지용 복합체 음전극을 제조하고 그 물성과 전기화학적 특성을 조사하였다. 이 음전극은 초기 방전시 최대 700 mAh $g^{-1}$의 우수한 방전용량을 나타내었지만 사이클 특성은 심각한 열화를 보였다. 이것은 나노입자간 단순혼합만으로는 전극판의 기공성과 Ni 성분이 충방전에 따르는 Sn성분의 팽창/수축에 대한 기계적 완충제 역할이 충분하지 않았기 때문이며, 차후 이를 보완하는 나노구조체 Sn-Ni 음전극의 설계와 시험이 필요하다.

리튬 2차전지용 양극소재 $LiFePO_4/C$의 합성 및 리트벨트 구조분석 (Synthesis and Rietveld Refinement of the Cathode Material $LiFePO_4/C$ for Rechargeable Lithium Batteries)

  • 황길찬;최진범;김재광;안주현
    • 한국광물학회지
    • /
    • 제22권1호
    • /
    • pp.63-72
    • /
    • 2009
  • 개량된 MA법으로 합성된 $LiFe(PO_4)/C$에 대해 X-선 회절분석을 실시하여 리트벨트법에 의해 결정학적 연구를 수행하였다. 리트벨트 계산 결과 리트벨트 R 지수 값은 $R_p=8.14%,\;R_{wp}=11.1%,\;R_{exp}=9.09%,\;R_B=3.88%$, S (GofF, Goodness of fit) = 1.2으로 계산이 잘 이루어졌음을 알 수 있다. $LiFePO_4/C$는 공간군 Pnma를 가지며, 격자상수 값은 a = 10.3229(3)${\AA}$, b = 6.0052(2) ${\AA}$, c = 4.6939(1) ${\AA}$이고 체적값은 V = 290.98(1) ${\AA}^3$으로 기존 다른 합성법의 연구결과와 잘 일치한다. 분말 입자는 고순도를 가지고 나노 크기($65{\sim}90nm$)로 기존 MA법보다 상대적으로 미세하고 균질도가 향상되었다. 따라서 개량된 MA법은 상업용 리튬 2차 전지의 양극물질 생산을 위한 우수한 제조법으로 판단된다.