DOI QR코드

DOI QR Code

Extractive Metallurgy of Lithium

리튬의 제련기술

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • 손호상 (경북대학교 신소재공학부)
  • Received : 2021.12.20
  • Accepted : 2022.01.14
  • Published : 2022.06.30

Abstract

Lithium is the lightest metal and the first metal in the periodic table. Lithium is used in a variety of applications, including the production of organolithium compounds, as an alloying addition to aluminum and magnesium, and as the anode in rechargeable lithium ion batteries especially for electronic devices and electric vehicles. Therefore, lithium is indispensable metal in our daily lives. The use of lithium continues to rise and has increased from about 14,000 tonnes per year worldwide in the 2000 to about 82,200 tonnes in the 2000. However, lithium is a representative rare metal and ranks 32nd among the abundant elements in the earth's crust. This study reviews the current status of the lithium extraction processes as well as the trend in production amount and use. Lithium is extracted by a various methods depending on the type of resources. These extraction methods are essential for the development of new recycling processes that can extract lithium from secondary lithium resources.

리튬은 가장 가벼운 금속으로 주기율표상의 첫 번째 금속이다. 리튬은 유기 화합물부터 알루미늄이나 마그네슘의 합금원소는 물론 전자기기나 전기 자동차용 리튬이온 이차전지의 양극재 등 다양한 용도로 사용되고 있다. 따라서 리튬은 우리 일상생활에서 필수적인 금속이다. 전 세계 리튬의 사용량은 2000년도의 약 14,000 톤에서 2020년에는 약 82,200 톤으로 계속 증가하였다. 그러나 리튬은 지각 중 원소 존재도가 32 번째인 대표적인 희소금속이다. 본 연구에서는 생산량 및 용도와 리튬 제련기술에 대해 고찰하였다. 리튬은 자원이 종류에 따라 다양한 제련법으로 추출된다. 이러한 다양한 리튬의 제련기술은 리튬 2차 자원으로부터 리튬을 추출하는 새로운 재활용 프로세스의 개발에 필수적으로 필요하다.

Keywords

References

  1. Wietelmann, U. and Klett, J., 2018 : 200 Years of Lithium and 100 Years of Organolithium Chemistry, Z. Anorg. Allg. Chem., 644, pp.194-204. https://doi.org/10.1002/zaac.201700394
  2. Bradley, D. C., Stillings, L. L., Jaskula, B. W. et al., 2017 : Lithium, Chap. K of Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply, p.K1, Ed. by Klaus J. Schulz, John H. DeYoung, Jr., Robert R. Seal II, et al., U.S. Geological Survey Professional Paper 1802, USGS.
  3. Garrett, D. E., 2004 : Handbook of Lithium and Natural Calcium Chloride (1st ed.), p.189, Boston, Mass., Elsevier.
  4. Kelly, T. D., Ober, J. A. and Jaskula, B. W., 2014 : U.S. Geological Survey, 2014, Lithium statistics, Historical statistics for mineral and material commodities in the United States.
  5. Jaskula, B. W., 2021 : Lithium, U.S. Geological Survey, Mineral Commodity Summaries.
  6. Dessemond, C., Lajoie-Leroux, F., Soucy, G., et al., 2019: Spodumene: The Lithium Market, Resources and Processes, Minerals, 9, 334, pp.1-17.
  7. Statista, https://www.statista.com/statistics/268787/lithium-usage-in-the-world-market/, June 18, 2022.
  8. Goonan, T.G., 2012 : Lithium use in batteries. U.S. Geological Survey Circular 1371, 14, p.3.
  9. Meshram, P., Pandey, B. D. and Mankhand, T. R., 2014 : Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review, Hydrometallurgy, 150, pp.192-208. https://doi.org/10.1016/j.hydromet.2014.10.012
  10. Mohr, S. H., Mudd, G. M. and Giurco, D., 2012 : Lithium Resources and Production: Critical Assessment and Global Projections, Minerals, 2, pp.65-84. https://doi.org/10.3390/min2010065
  11. Lalasari, L. H., Widowati, M. K., Natasha, N. C., et al., 2017 : The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation, IOP Conf. Ser.: Mater. Sci. Eng. 176, 012040, pp.1-10.
  12. Haynes, W. M., Lide, D. R. and Bruno, T. J., 2014 : Section 5 Thermochemistry, Electrochemistry, and Solution Chemistry, Solubility product Constants, CRC Handbook of Chemistry and Physics 95th Edition, p.5-201, CRC Press, Taylor & Francis Group, NY, USA.
  13. Chon, U., Lee, I. C., Kim, K. Y., et al., 2017 : Method for Manufacturing Lithium Hydroxide and Method Using Same for Manufacturing Lithium Carbonate. Patent US 9,598,291 B2.
  14. Braga, P., Franca, S., Neumann, R., et al., 2019 : Alkaline Process for Extracting Lithium from Spodumene, Hydroprocess 2019(11th International Seminar on Process Hydrometallurgy) 6/19/2019 - 6/21/2019, Sheraton Santiago, Santiago, Chile.
  15. Chen, Y., Tian, Q., Chen, B., et al., 2011 : Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process, Hydrometallurgy, 109, pp.43-46. https://doi.org/10.1016/j.hydromet.2011.05.006
  16. Lee, Sugyeong, 2018 : Extraction of Lithium from Spodumene by Alkali Fusion, Master's Thesis, Seoul National University.
  17. Kumar, A., Fukuda, H., Hatton, T. A., et al.,, 2019 : Lithium Recovery from Oil and Gas Produced Water: A Need for a Growing Energy Industry, ACS Energy Lett., 4, pp.1471-1474. https://doi.org/10.1021/acsenergylett.9b00779
  18. Tam, T. and Luong, V. T., 2015 : Ch. 3 Lithium Production Process, p.99, Lithium Process Chemistry- Resources, Extraction, Batteries, and Recycling, Ed. by Chagnes, A. and Swiaatowska, J., Elsevier Inc., USA.
  19. Chon, U., Han, G., Kim, K., et al., 2010 : Current Status of Lithium Resources, J. of Korean Inst. of Resources Recycling, 19(3), pp.3-8.
  20. Meng, F., McNeice, J., Zadeh, S. S., et al., 2021 : Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries, Mineral Processing and Extractive Metallurgy Review, 42(2), pp.123-141. https://doi.org/10.1080/08827508.2019.1668387
  21. Chon, U., Lee, I. C., Kim, Y., et al., 2017 : Methode for Manufacturing Lithium Hydroxide and Method Using Same for Manufacturing Lithium Carbonate, US Patent 9,598.291 B2.
  22. D. E. Garrett, 2004 : Handbook of Lithium and Natural Calcium Chloride, p.117, Elsevier Science & Technology.
  23. Abe, Y., 2010 : Lithium Supply & Market, JOGMEC Metals Resources Report, 40(2), pp.173-186.
  24. Tam, T. and Luong, V. T., 2015 : Ch. 3 Lithium Production Process, p.104, Lithium Process Chemistry- Resources, Extraction, Batteries, and Recycling, Ed. by Chagnes, A. and Swiaatowska, J., Elsevier Inc., USA.
  25. Liu, X., Chen, X., He, L., et al., 2015 : Study on extraction of lithium from salt lake brine by membrane electrolysis, Desalination, 376, pp.35-40. https://doi.org/10.1016/j.desal.2015.08.013
  26. Tam, T. and Luong, V. T., 2015 : Ch. 3 Lithium Production Process, p.83, Lithium Process Chemistry- Resources, Extraction, Batteries, and Recycling, Ed. by Chagnes, A. and Swiaatowska, J., Elsevier Inc., USA.
  27. Rioyo, J., Tuset, S., and Grau, R., 2020 : Lithium extraction from spodumene by the traditional sulfuric acid process: A review, Miner. Process. Extr. Metall. Rev., pp.1-10.
  28. D. E. Garrett, 2004 : Handbook of Lithium and Natural Calcium Chloride, p.164, Elsevier Science & Technology.
  29. David London, 1984 : Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites, American Mineralogist, 69, pp.995-1004.
  30. Tam, T. and Luong, V. T., 2015 : Ch. 3 Lithium Production Process, p.108, Lithium Process Chemistry- Resources, Extraction, Batteries, and Recycling, Ed. by Chagnes, A. and Swiaatowska, J., Elsevier Inc., USA.
  31. Kipouros, G. J. and Sadoway, D. R., 1998 : Toward New Technologies for the Production of Lithium, JOM, 50(5), pp.24-26.
  32. Zhang, X., Han, A. and Yang, Y., 2020 : Review on the production of high-purity lithium metal, J. Mater. Chem. A, 8, pp.22455-22466. https://doi.org/10.1039/D0TA07611B
  33. Kruesi, W. H. and Fray, D. J., 1993 : The Electrowinning of Lithium from Chloride-Carbonate Melts, Metall. Mater. Trans. B, 24, pp.605-615. https://doi.org/10.1007/BF02673176
  34. Takeda, O., Li, M., Toma, T., et al., 2014 : Electrowinning of Lithium from LiOH in Molten Chloride, J. Electrochem. Soc., 161, pp.D820-D823. https://doi.org/10.1149/2.0871414jes
  35. Cooper, J. F., Ebbinghaus, B. B., Peterman, C. S., et al., 1995 : Development of a Bipolar Cell for Lithium Production, in Fundamentals of Electrochemical Process Design: A Tutorial and Anodic Processes, The Electrochemical Society, Pennington, NJ, USA.
  36. Lang, J., Jin, Y., Liu, K., et al., 2020 : High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte, Nat. Sustainability, 3, pp.386-390. https://doi.org/10.1038/s41893-020-0485-x
  37. Laude, T., Kobayashi, T. and Sato, Y., 2010 : Electrolysis of LiOH for hydrogen supply, Int. J. Hydrogen Energy, 35, pp.585-588. https://doi.org/10.1016/j.ijhydene.2009.11.028
  38. Schmuch, R., Wagner, R., Horpel, G., et al., 2018 : Performance and cost of materials for lithium-based rechargeable automotive batteries, Nat. Energy, 3, pp.267-278. https://doi.org/10.1038/s41560-018-0107-2