• Title/Summary/Keyword: Recent Research

Search Result 11,699, Processing Time 0.039 seconds

An Approach for Applying Network-based Moving Target Defense into Internet of Things Networks

  • Park, Tae-Keun;Park, Kyung-Min;Moon, Dae-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.35-42
    • /
    • 2019
  • In this paper, we propose an approach to apply network-based moving target defense into Internet of Things (IoT) networks. The IoT is a technology that provides the high interconnectivity of things like electronic devices. However, cyber security risks are expected to increase as the interconnectivity of such devices increases. One recent study demonstrated a man-in-the-middle attack in the statically configured IoT network. In recent years, a new approach to cyber security, called the moving target defense, has emerged as a potential solution to the challenge of static systems. The approach continuously changes system's attack surface to prevent attacks. After analyzing IPv4 / IPv6-based moving target defense schemes and IoT network-related technologies, we present our approach in terms of addressing systems, address mutation techniques, communication models, network configuration, and node mobility. In addition, we summarize the direction of future research in relation to the proposed approach.

Recent Advances in Composite Polymer Electrolyte Membranes for Fuel Cell (연료전지용 고분자 전해질 복합막의 최근 발전 동향)

  • Vijayakumar, Vijayalekshmi;Son, Tae Yang;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Composite polymer electrolyte membranes based on porous supports have been recognized as an alternative for fuel cell applications since it can provide both mechanical as well as electrochemical stabilities. This mini-review highlights recent advances in supported composite polymer electrolyte membranes using porous matrix and nanofibrous supports. In addition, a comprehensive table listing a wide range of anion and proton exchange pore filling membranes was provided at the end of the review.

Payment Method Determination Factors in International Trade E-marketplace: Focused on Alibaba.com (무역거래알선사이트에서의 결제방식 선택요인 : 알리바바를 중심으로)

  • Lee, Yoon;Jung, Hong-joo
    • Korea Trade Review
    • /
    • v.44 no.5
    • /
    • pp.161-174
    • /
    • 2019
  • Recent studies on trade payment methods have suggested various alternatives to replace remittance payments. However, these studies theoretically provided the possibilities and limitations of each alternative. To check recent changes in trade practices, our research analyzed payment methods in international trade e-marketplace. Using company and product information obtained from Alibaba.com, we analyzed payment methods used in this e-marketplace and examined determination factors for new payment methods. According to the results of logistic regression analysis, we found a relationship between new payment method and factors such as market competition and the age of the company. Also, providing Paypal payments showed a correlation with market competition and price level of products as well as e-commerce infrastructure. Though these study results feature limitations in the generalization of results, it contributes to the research on payment method trends in international trade.

Mass spectrometry-based approaches to explore metabolism regulating ferroptosis

  • Nguyen, Chi Thi Ngoc;Kim, Seon Min;Kang, Yun Pyo
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.413-416
    • /
    • 2022
  • Ferroptosis is a type of programmed cell death distinct from apoptosis or necroptosis. Ferroptosis is well characterized by an iron-dependent accumulation of lipid peroxides and disruption of cellular membrane integrity. Many metabolic alterations can prevent or accelerate ferroptosis induction. Recent advances in analytical techniques of mass spectrometry have allowed high-throughput analysis of metabolites known to be critical for understanding ferroptosis regulatory metabolism. In this review, we introduce mass spectrometry-based analytical methods contributing to recent discovery of various metabolic pathways regulating ferroptosis, focusing on cysteine metabolism, antioxidant metabolism, and poly-unsaturated fatty acid metabolism.

Recent advances in feed and nutrition of beef cattle in China - A review

  • Qian Gao;Hu Liu;Zuo Wang;Xinyi Lan;Jishan An;Weijun Shen;Fachun Wan
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.529-539
    • /
    • 2023
  • The beef cattle industry in China has advanced remarkably since its reform and opening up; consequently, China has become the world's third-largest beef cattle producer. China is also one of the countries with the most substantial research input and output in the field of beef cattle feed and nutrition. The progress and innovation by China in the research field of beef cattle feed and nutrition have undoubtedly promoted the development of the domestic beef cattle industry. This review summarizes recent advances in feed resource development, nutrient requirements, and nutritional regulation of beef cattle in China. Limitations in current research and perspectives on future work are also discussed.

Radiomics and Deep Learning: Hepatic Applications

  • Hyo Jung Park;Bumwoo Park;Seung Soo Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.387-401
    • /
    • 2020
  • Radiomics and deep learning have recently gained attention in the imaging assessment of various liver diseases. Recent research has demonstrated the potential utility of radiomics and deep learning in staging liver fibroses, detecting portal hypertension, characterizing focal hepatic lesions, prognosticating malignant hepatic tumors, and segmenting the liver and liver tumors. In this review, we outline the basic technical aspects of radiomics and deep learning and summarize recent investigations of the application of these techniques in liver disease.

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim;Je-Yong Choi;HaeYong Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.

Survey on Developing Path Planning for Unmanned Aerial Vehicles (무인비행체 경로계획 기술 동향)

  • Y.S. Kwon;J.H. Cha
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.10-20
    • /
    • 2024
  • Recent advancements in autonomous flight technologies for Unmanned Aerial Vehicles (UAVs) have greatly expanded their applicability for various tasks, including delivery, agriculture, and rescue. This article presents a comprehensive survey of path planning techniques in autonomous navigation and exploration that are tailored for UAVs. The robotics literature has studied path and motion planning, from basic obstacle avoidance to sophisticated algorithms capable of dynamic decision-making in challenging environments. In this article, we introduce popular path and motion planning approaches such as grid-based, sampling-based, and optimization-based planners. We further describe the contributions from the state-of-the-art in exploration planning for UAVs, which have been derived from these well-studied planners. Recent research, including the method we are developing, has improved performance in terms of efficiency and scalability for exploration tasks in challenging environments without human intervention. On the basis of these research and development trends, this article discusses future directions in UAV path planning technologies, illustrating the potential for UAVs to perform complex tasks with increased autonomy and efficiency.