DOI QR코드

DOI QR Code

Recent advances in feed and nutrition of beef cattle in China - A review

  • Qian Gao (College of Animal Science and Technology, Hunan Agricultural University) ;
  • Hu Liu (State Key Laboratory of Grassland Agro-Ecosystems; College of Ecology, Lanzhou University) ;
  • Zuo Wang (College of Animal Science and Technology, Hunan Agricultural University) ;
  • Xinyi Lan (College of Animal Science and Technology, Hunan Agricultural University) ;
  • Jishan An (College of Animal Science and Technology, Hunan Agricultural University) ;
  • Weijun Shen (College of Animal Science and Technology, Hunan Agricultural University) ;
  • Fachun Wan (College of Animal Science and Technology, Hunan Agricultural University)
  • Received : 2022.05.12
  • Accepted : 2022.08.10
  • Published : 2023.04.01

Abstract

The beef cattle industry in China has advanced remarkably since its reform and opening up; consequently, China has become the world's third-largest beef cattle producer. China is also one of the countries with the most substantial research input and output in the field of beef cattle feed and nutrition. The progress and innovation by China in the research field of beef cattle feed and nutrition have undoubtedly promoted the development of the domestic beef cattle industry. This review summarizes recent advances in feed resource development, nutrient requirements, and nutritional regulation of beef cattle in China. Limitations in current research and perspectives on future work are also discussed.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (32172758), the China Agriculture Research System of MOF and MARA (CARS-37), and the Hunan Provincial Natural Science Foundation of China (2021JJ30011).

References

  1. National Bureau of Statistics of China. China statistical yearbook. Beijing, China: China Statistics Press; 2021. (in Chinese)
  2. Chen H, Aorigele, Wang CJ, et al. Effects of chronic cold stress on the serum enzyme activity, protein metabolism and serum hormone secretion of grazing Mongolian cows. J China Agric Univ 2019;24:47-54. (in Chinese)
  3. Li FP, Shah AM, Wang ZS, et al. Effects of land transport stress on variations in ruminal microbe diversity and immune functions in different breeds of cattle. Animals 2019;9:599. https://doi.org/10.3390/ani9090599
  4. Chen H, Wang CJ, Simujid, et al. Effects of chronic heat stress on blood biochemical index, immune function and antioxidant capacity of grazing beef cattle. J China Agric Univ 2021;26:61-9. (in Chinese)
  5. Xue B, Wang LZ, Yan T. Methane emission inventories for enteric fermentation and manure management of yak, buffalo and dairy and beef cattle in China from1988 to 2009. Agric Ecosyst Environ 2014;195:202-10. https://doi.org/10.1016/j.agee.2014.06.002
  6. Wei C, Liu GF, You W, et al. Comparison on degradation rule of six kinds of common roughages for ruminants in rumen of beef cattle. Chin J Anim Nutr 2019;31:1666-75. (in Chinese)
  7. Chen GJ, Xiong XQ, He RX, et al. Evaluation of feeding value for whole Broussonetia papyrifera silage in diet of Wuchuan black beef cattle. Sci Agric Sin 2021;54:4218-28. (in Chinese)
  8. Guo ZX, Zeng L, He CX, et al. Beef cattle fattening efficiency of banana stems and leaves silage. Chin Agric Sci Bull 2019;35:97-101 (in Chinese)
  9. Ma YL, Chen X, Zahoor Khan M, et al. The impact of ammoniation treatment on the chemical composition and in vitro digestibility of rice straw in Chinese Holsteins. Animals 2020; 10:1854. https://doi.org/10.3390/ani10101854
  10. Guo W, Guo XJ, Zhu BC, Guo YY, Zhou X. In situ degradation, ruminal fermentation, and the rumen bacterial community of cattle fed corn stover fermented by lignocellulolytic microorganisms. Anim Feed Sci Technol 2019;248:10-9. https://doi.org/10.1016/j.anifeedsci.2018.07.007
  11. Xu JH, Zhang W, Huang J, Jiang J, Sun CM, Mo F. Effects of dietary phosphorus levels on apparent digestibility of nutrients in Simmental crossbreed replacement heifers. Chin J Anim Nutr 2011;23:589-96. (in Chinese)
  12. Ministry of Agriculture of the People's Republic of China. Feeding standard of beef cattle (NY/ T815-2004). Beijing, China: China Agriculture Press, 2004. (in Chinese)
  13. Zhang XM, Wang ZS, Chen Y, et al. Protein deposition efficiency and intestinal digestible crude protein requirement of growing Qinchuan cattle. Chin J Anim Nutr 2014;26:2155-61. (in Chinese)
  14. Jin G, Xue YR, Zhang YQ, et al. Effects of different combinations of roughage and corn silage on growth performance, slaughter performance, meat performance and meat quality of Jinnan cattle. Chin J Anim Nutr 2021;33:1-11.(in Chinese)
  15. Wang HB, Li H, Wu F, et al. Effects of dietary energy on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians bulls slaughtered at different ages. Animals 2019;9:1123. https://doi.org/10.3390/ani9121123
  16. Zhang MQ, Li Y, Li SX, et al. Effects of dietary energy levels on production performance, blood index, slaughter performance and meat quality of Holstein steers. Sci Agric Sin 2021;54:203-12. (in Chinese)
  17. Liu Q, Wang C, Li HQ, et al. Effects of dietary protein level and rumen-protected pantothenate on nutrient digestibility, nitrogen balance, blood metabolites and growth performance in beef calves. J Anim Feed Sci 2018;27:202-10. https://doi.org/10.22358/jafs/92660/2018
  18. Qiu QH, Qiu XJ, Gao CY, Muhammad AUR, Cao BH, Su HW. High-density diet improves growth performance and beef yield but affects negatively on serum metabolism and visceral morphology of Holstein steers. J Anim Physiol Anim Nutr 2020;104:1197-208. https://doi.org/10.1111/jpn.13340
  19. Bai J, Zhao EL, Li YQ, et al. Effects of dietary energy level on rumen fermentation and blood biochemical indexes of Jinjiang cattle in early stage of fattening. Chin J Anim Nutr 2019;31:2159-67. (in Chinese)
  20. Liu Q, Wang C, Li HQ, et al. Effects of dietary protein levels and rumen-protected pantothenate on ruminal fermentation, microbial enzyme activity and bacteria population in Blonde d'Aquitaine × Simmental beef steers. Anim Feed Sci Technol 2017;232:31-9. https://doi.org/10.1016/j.anifeedsci.2017.07.014
  21. Zhang DD, Zhang YQ, Cheng J, et al. Effects of different roughage combinations on in vitro rumen fermentation characteristics of Jinnan cattle. Acta Pratac Sin 2021;30:93-100. (in Chinese)
  22. Zhang YL, Liu Q, Wang C, et al. Effects of supplementation of Simmental steers with 2-methylbutyrate on rumen microflora, enzyme activities and methane production. Anim Feed Sci Technol 2015;199:84-92. https://doi.org/10.1016/j.anifeedsci.2014.11.003
  23. Wang C, Liu Q, Guo G, et al. Effects of dietary soybean oil and coated folic acid on ruminal digestion kinetics, fermentation, microbial enzyme activity and bacterial abundance in Jinnan beef steers. Livest Sci 2018;217:92-8. https://doi.org/10.1016/j.livsci.2018.09.017
  24. Wang C, Ma J, Hu R, et al. Effects of active dry yeast on growth performance, nutrient apparent digestibilities, rumen fermentation parameters and serum biochemical and antioxidant indexes of Simmental crossbred cattle. Chin J Anim Nutr 2021;33:3925-33. (in Chinese)
  25. Tian K, Liu JH, Sun YW, et al. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Anim Feed Sci Technol 2019;258: 114299. https://doi.org/10.1016/j.anifeedsci.2019.114299
  26. Luo D, Gao YF, Lu YY, et al. Niacin alters the ruminal microbial composition of cattle under high-concentrate condition. Anim Nutr 2017;3:180-5. https://doi.org/10.1016/j.aninu.2017.04.005
  27. Peng QH, Wang ZS, Tan C, Zhang HB, Hu YN, Zou HW. Effects of different pomace and pulp dietary energy density on growth performance and intramuscular fat deposition relating mRNA expression in beef cattle. J Food Agric Environ 2012;10:404-7.
  28. Zhang HB, Guan WK. The response of gene expression associated with intramuscular fat deposition in the longissimus dorsi muscle of Simmental × Yellow breed cattle to different energy levels of diets. Anim Sci J 2019;90:493-503. https://doi.org/10.1111/asj.13170
  29. Xu LJ, Bao LB, Zhao XH, et al. Effects of daidzein on carcass performance and meat quality of fattening Xiangzhong black cattle. Chin J Anim Nutr 2016;28:191-7. (in Chinese)
  30. Yang ZQ, Zhao XH, Xiong XW, et al. Uncovering the mechanism whereby dietary nicotinic acid increases the intramuscular fat content in finishing steers by RNA sequencing analysis. Anim Prod Sci 2019;59:1620-30. https://doi.org/10.1071/AN18205
  31. Zhang HB, Dong XW, Wang ZS, et al. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow breed × Simmental cattle. Anim Sci J 2016;87:517-24. https://doi.org/10.1111/asj.12447
  32. Saber H, Yakoob MY, Shi PL, et al. Omega-3 fatty acids and incident ischemic stroke and its atherothrombotic and cardioembolic subtypes in 3 US cohorts. Stroke 2017;48:2678-85. https://doi.org/10.1161/STROKEAHA.117.018235
  33. Wang HB, He Y, Li H, et al. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels. Appl Microbiol Biotechnol 2019;103:4931-42. https://doi.org/10.1007/s00253-019-09839-3
  34. Yang ZL, Yang WQ, Wu SF, et al. Effects of dietary rumen undegradable unsaturated fat on growth performance and fatty acid composition of muscle in Angus beef. Chin J Anim Nutr 2018;30:4444-52. (in Chinese)
  35. Xu CC, Zhang S, Sun BZ, et al. Dietary supplementation with microalgae (Schizochytrium sp.) improves the antioxidant status, fatty acids profiles and volatile compounds of beef. Animals 2021;11:3517. https://doi.org/10.3390/ani11123517
  36. Li JL, Zhang R, Wu JP, et al. Effects of oregano essential oil on growth performance, blood physiological indices, meat quality and muscle fatty acids of Pingliang red cattle. Chin J Anim Nutr 2021;33:4478-90. (in Chinese)
  37. Zhai RN, Dong XS, Feng L, Li SL, Hu ZY. The Effect of heat stress on autophagy and apoptosis of rumen, abomasum, duodenum, liver and kidney cells in calves. Animals 2019;9:854. https://doi.org/10.3390/ani9100854
  38. Cao YF, Li QF, Gao YX, et al. Effects of dietary cation anion balance on performance of heat stressed beef cattle. Acta Vet Zootech Sin 2012;43:1239-46. (in Chinese)
  39. Gao CY, Wang JJ, Qiu QH, et al. Effects of diets with different nutrient levels on growth performance, rumen fermentation and blood parameters of fattening Holstein steers under heat stress conditions. Chin J Anim Nutr 2021;33:6555-71. (in Chinese)
  40. Wu ST, Aorigrle, Wang CJ, et al. Effects of nutritional regulation on reproductive hormone content, immune function and antioxidant ability of grazing pregnant cattle during chronic heat stress period. Chin J Anim Nutr 2021;33:1545-54. (in Chinese)
  41. Zhuang XN, Chen ZJ, Sun XH, et al. Fermentation quality of herbal tea residue and its application in fattening cattle under heat stress. BMC Vet Res 2021;17:348. https://doi.org/10.1186/s12917-021-03061-y
  42. Fu YB, Huang T, Qu MR, et al. Effects of honeysuckle extracts on serum hormones and antioxidant indexes of beef cattle under heat stress. Chin J Anim Nutr 2016;28:926-31. (in Chinese)
  43. Chen H, Zhen J, Wu Z, et al. Grape seed extract and chromium nicotinate reduce impacts of heat stress in Simmental × Qinchuan steers. Anim Prod Sci 2019;59:1868-79. https://doi.org/10.1071/AN17152
  44. Liu L, Zhang WJ, Yu HJ, Xu LJ, Qu MR, Li YJ. Improved antioxidant activity and rumen fermentation in beef cattle under heat stress by dietary supplementation with creatine pyruvate. Anim Sci J 2020;91:e13486. https://doi.org/10.1111/asj.13486
  45. Li YJ, Shang HL, Zhao XH, et al. Radix puerarin extract (puerarin) could improve meat quality of heat-stressed beef cattle through changing muscle antioxidant ability and fiber characteristics. Front Vet Sci 2021;7:615086. https://doi.org/10.3389/fvets.2020.615086
  46. Chen J, Mao YQ, Guo K, et al. The synergistic effect of traditional Chinese medicine prescription and rumen-protected gamma-aminobutyric acid on beef cattle under heat stress. J Anim Physiol Anim Nutr 2021;105:807-15. https://doi.org/10.1111/jpn.13507
  47. Shang XL, Yang ZM, Lan J, et al. Effects of diets supplemented with Agastache rugosus essential oil on growth performance and serum biochemical indexes of beef cattle under heat stress. Chin J Anim Nutr 2022;34:395-403. (in Chinese)
  48. Niu HX, Hu ZF, Zhang S, et al. Effects of dietary energy level and ambient temperature humidity index on growth performance, nutrient apparent digestibility and serum biochemical indices of fattening beef cattle. Chin J Anim Nutr 2020;32:3190-8. (in Chinese)
  49. Zhao HD, Tang XQ, Wu ML, et al. Transcriptome Characterization of Short Distance Transport Stress in Beef Cattle Blood. Front Genet 2021;12:616388. https://doi.org/10.3389/fgene.2021.616388
  50. Liu YX, Sun Y, Li YL, Zhai L, Hao WQ, Gao TY. Effect of Astragalus polysaccharides on short-distance transport stress in beef cattle. China Anim Husb Vet Med 2017;44:87-93. (in Chinese)
  51. Mao K, Lu GW, Li YJ, et al. Effects of rumen-protected creatine pyruvate on blood biochemical parameters and rumen fluid characteristics in transported beef cattle. BMC Vet Res 2022;18:35. https://doi.org/10.1186/s12917-021-03134-y
  52. Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995;73:2483-92. https://doi.org/10.2527/1995.7382483x
  53. Zhao YC, Xie B, Gao J, Xiao MM, Zhao GY. Balancing the dietary ratio of nitrogen to sulfur by adding inorganic sulfur improves nitrogen retention and consequently decreases urine nitrous oxide emissions in steers. Anim Feed Sci Technol 2021;274:114711. https://doi.org/10.1016/j.anifeedsci.2020.114711
  54. Zhao Y, Rahman MS, Zhao G, Bao Y, Zhou K. Dietary supplementation of rumen-protected methionine decreases the nitrous oxide emissions of urine of beef cattle through decreasing urinary excretions of nitrogen and urea. J Sci Food Agric 2020;100:1797-805. https://doi.org/10.1002/jsfa.10217
  55. Wei C, Lin SX, Wu JL, Zhao GY, Zhang TT, Zheng WS. Supplementing vitamin E to the ration of beef cattle increased the utilization efficiency of dietary nitrogen. Asian-Australas J Anim Sci 2016;29:372-7. https://doi.org/10.5713/ajas.15.0322
  56. Yang JS, Zheng J, Fang XP, Jiang X, Sun YK, Zhang YG. Effects of dietary N-carbamylglutamate on growth performance, apparent digestibility, nitrogen metabolism and plasma metabolites of fattening Holstein bulls. Animals 2021;11:126. https://doi.org/10.3390/ani11010126
  57. Zhou K, Bao Y, Zhao G. Effects of dietary crude protein and tannic acid on nitrogen excretion, urinary nitrogenous composition and urine nitrous oxide emissions in beef cattle. J Anim Physiol Anim Nutr 2019;103:1675-83. https://doi.org/10.1111/jpn.13186
  58. Wei C, Yang K, Zhao GY, Lin SX, Xu ZW. Effect of dietary supplementation of gallic acid on nitrogen balance, nitrogen excretion pattern and urinary nitrogenous constituents in beef cattle. Arch Anim Nutr 2016;70:416-23. https://doi.org/10.1080/1745039X.2016.1214345
  59. Gao J, Cheng B, Liu Y, Li MM, Zhao G. Dietary supplementation with red cabbage extract rich in anthocyanins increases urinary hippuric acid excretion and consequently decreases nitrous oxide emissions in beef bulls. Anim Feed Sci Technol 2021;281:115075. https://doi.org/10.1016/j.anifeedsci.2021.115075
  60. Jin S, Huang SZ, Zhong Y, Liang MD, Chen T, Wang XM. Evaluation of mixing silage of Musa paradisiaca stems and leaves and Stylosnthes guianensis. Pratac Sci 2016;33:512-8. (in Chinese)
  61. Yang WW, Fu XY, Yang B, He YP, Qin SZ, Guo YL. Effects of different absorbents and corn on fermentation characteristics and quality of potato vines silages. Chin J Anim Nutr 2015;27:3643-8. (in Chinese)
  62. Yue CJ, Yang YW, Hou PX, Ma JF, Shi A, Liang XJ. Effect of potato seedlings silage on growth performance and blood biochemical indexes in Angus cattle. Feed Ind 2020;43:6-9. (in Chinese)
  63. Wang ZL, Liang XJ, Ding W, Li YY, Yang YW. Effect of potato starch residue replacing part of corn flour on growth performance and blood biochemical index of beef cattle. Feed Res 2020;43:17-22. (in Chinese)
  64. Xia ZJ, Song Y, Chang WX, Zan LS. Effects of perilla cake and rapeseed meal instead of soybean meal in diet on apparent digestibility and nitrogen metabolism of beef cattle. China Anim Husb Vet Med 2020;47:2789-98. (in Chinese)
  65. Wang NW, Huang XZ, Liu JY, Huang BZ, Shen YH. Evaluation of the nutritional value of mulberry leaves fed to Yunnan Yunling cattle. Pratac Sci 2019;36:2365-73. (in Chinese)
  66. Luo Y, Li HB, Xiao JZ, et al. Effects of fermented mulberry leaves on serum biochemical, antioxidant and immune indexes of Xiangxi Yellow cattle × Limousin hybrid F1 fattening bulls. Chin J Anim Nutr 2020;32:4914-21. (in Chinese)
  67. Gong J. Dynamic change and rumen degradation characteristics of Caragana korshinskii nutrients in sheep. Chin J Anim Nutr 2012;24:1983-91. (in Chinese)
  68. Chen L, Zhang LQ, Hong L, et al. Analysis of nutritional composition for feeding Caragana intermedia pellets and the test for the fattening effect on beef cattle. Heilongjiang Anim Sci Vet Med 2014;11:95-8. (in Chinese)
  69. National Bureau of Statistics of China. China rural statistical yearbook. Beijing, China: China Statistics Press; 2021. (in Chinese)
  70. Zhu JC, Li RH, Yang XY, Zhang ZQ, Fan ZM. Spatial and temporal distribution of crop straw resources in 30 years in China. J Northwest A&F Univ 2012;40:139-45. (in Chinese)
  71. Wang W. Study on protein and energy requirements and metabolism rules of 6-10 month-year-old Jinjiang cattle [Master's thesis]. Nanchang, China: Jiangxi Agricultural University; 2012. (in Chinese)
  72. Liu DY. Study on the energy and protein requirement of Xiangzhong Black cattle xiannan Cattle [Master's thesis]. Nanchang, China: Jiangxi Agricultural University; 2013. (in Chinese)
  73. Qiao YL, Tang LL, Xia XL, Chen SC, Fang Y, Fang FP. Fattening nutritional requirements of Simmental × Guizhou local hybrid cattle. Guizhou Agric Sci 2014;42:158-63. (in Chinese)
  74. Wei M. Research of evaluation of net energy requirement and effective energy value of common feedstuffs for growing Wandong cattle [Doctor's thesis]. Nanjing, China: Nanjing Agricultural University; 2018. (in Chinese)
  75. Wei M, Chen L, Lian XM, Chen ZQ, Yan PS. Energy and protein requirements for maintenance of Southern Yellow cattle fed a corn silage or straw-based diet. Livest Sci 2018;207:75-82. https://doi.org/10.1016/j.livsci.2017.09.002
  76. Bai J, Zhao EL, Li MF, et al. Effects of dietary energy level on growth performance, nutrient digestion and energy metabolism of Jinjiang steers in early stage. Chin J Anim Nutr 2019;31:692-8. (in Chinese)
  77. Chen Y, Wang ZS, Zhang XM, Wang J, Zou HW, Jiang XD. Energy metabolism and requirement of growing Qinchuan cattle. Chin J Anim Nutr 2016;28:1573-80. (in Chinese)
  78. Bai J, Zhao EL, Li MF, et al. Energy metabolism and requirement of Jinjiang cattle in the latter stage of fattening. China Anim Husb Vet Med 2019;46:732-9. (in Chinese)
  79. Gu SF. Study on energy requirement of hornless Xianan cattle in early fattening stage [Master's thesis]. Nanchang, China: Jiangxi Agricultural University; 2021. (in Chinese)
  80. Ma J, Wang C, Wang ZS, et al. Active dry yeast supplementation improves the growth performance, rumen fermentation, and immune response of weaned beef calves. Anim Nutr 2021;7:1352-9. https://doi.org/10.1016/j.aninu.2021.06.006
  81. Huang WM, Tan L, Wang Fen, Kang L, Li XB, Zuo FY. Effects of yeast culture on growth performance, slaughter performance and meat quality of finishing cattle. Chin J Anim Nutr 2019;31:1317-25. (in Chinese)
  82. Du RJ, Jiao SY, Dai Y, et al. Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Front Microbiol 2018;9;2006. https://doi.org/10.3389/fmicb.2018.02006
  83. Zhao XH, Chen ZD, Zhou S, et al. Effects of daidzein on performance, serum metabolites, nutrient digestibility, and fecal bacterial community in bull calves. Anim Feed Sci Technol 2017;225:87-96. https://doi.org/10.1016/j.anifeedsci.2017.01.014
  84. Chen GJ, Zhang R, Wu JH, et al. Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers. Livest Sci 2020;240:104121. https://doi.org/10.1016/j.livsci.2020.104121
  85. Bai YP, Zhang R, Wu JP, et al. Effects of oregano essential oil on growth performance, slaughter performance and meat quality of Pingliang red cattle. Chin J Anim Nutr 2020;32:5778-87. (in Chinese)
  86. Liu C, Wang C, Zhang J, et al. Guanidinoacetic acid and betaine supplementation have positive effects on growth performance, nutrient digestion and rumen fermentation in Angus bulls. Anim Feed Sci Technol 2021;276:114923. https://doi.org/10.1016/j.anifeedsci.2021.114923
  87. Luo D, Gao YF, Lu YY, et al. Niacin supplementation improves growth performance and nutrient utilisation in Chinese Jinjiang cattle. Ital J Anim Sci 2019;18:57-62. https://doi.org/10.1080/1828051X.2018.1480426
  88. Liu Q, Wang C, Li HQ, et al. Effects of dietary protein level and rumen-protected pantothenate on nutrient digestibility, nitrogen balance, blood metabolites and growth performance in beef calves. J Anim Feed Sci 2018;27:202-10. https://doi.org/10.22358/jafs/92660/2018
  89. Wu Q, La SK, Wang C, et al. Effects of coated copper sulphate and coated folic acid supplementation on growth, rumen fermentation and urinary excretion of purine derivatives in Holstein bulls. Anim Feed Sci Technol 2021;276:14921. https://oi.org/10.1016/j.anifeedsci.2021.114921
  90. Li GL, Zhang MM, Bai HX, Zhang YG. Effects of lysophospholipid on growth performance, nutrient apparent digestibility and serum biochemical indexes of Angus beef cattle. Chin J Anim Nutr 2022;34:1050-7. (in Chinese)
  91. Zhang XM, Wang ZS, Tang CM, et al. Effects of different dietary protein sources on energy and nitrogen metabolism and methane emission of beef cattle. Chin J Anim Nutr 2014;26:1830-7. (in Chinese)
  92. Zhang XL, Liu JW, Zhao HB, et al. Effects of dietary crude protein levels on respiration metabolism, nutrient apparent digestibility and serum biochemical indices of Steppe Red cattle. Chin J Anim Nutr 2021;33:6833-42. (in Chinese)
  93. Lin SX, Wei C, Zhao GY, Zhang TT, Yang K. Effects of supplementing rare earth element cerium on rumen fermentation, nutrient digestibility, nitrogen balance and plasma biochemical parameters in beef cattle. J Anim Physiol Anim Nutr 2015;99:1047-55. https://doi.org/10.1111/jpn.12295
  94. Guo JB, Wang C, Wang JQ. Effects of 2-methylbutyrate on daily gain, dietary nutrient digestion and methane emissions in Simmental cattle. China Anim Husb Vet Med 2016;43:2020-25. (in Chinese)
  95. Yang K, Wei C, Zhao GY, Xu ZW, Lin SX. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. J Anim Physiol Anim Nutr 2017;101:302-10. https://doi.org/10.1111/jpn.12531
  96. Sun YK, Yan XG, Ban ZB, Yang HM, Zhao YM. Effect of nitrate on the methane production and productivity of cattle. J China Agric Univ 2017;22:54-60. (in Chinese)
  97. Zhang XM, Smith ML, Gruninger RJ, et al. Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. J Anim Sci 2021;99:skab081. https://doi.org/10.1093/jas/skab081
  98. Jin Q, You W, Tan XW, et al. Caffeic acid modulates methane production and rumen fermentation in an opposite way with high-forage or high-concentrate substrate in vitro. J Sci Food Agric 2021;101:3013-20. https://doi.org/10.1002/jsfa.10935
  99. Wang YC, Yu SJ, Li Y, et al. Pilot study of the effects of polyphenols from chestnut involucre on methane production, volatile fatty acids, and ammonia concentration during in vitro rumen fermentation. Animals 2021;11:108. https://doi.org/10.3390/ani11010108