DOI QR코드

DOI QR Code

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Je-Yong Choi (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Pheno-typing Center, School of Medicine, Kyungpook National University) ;
  • HaeYong Kweon (Industrial Insect and Sericulture Division, National Institute of Agricultural Sciences, RDA)
  • Received : 2023.11.17
  • Accepted : 2023.12.14
  • Published : 2024.03.31

Abstract

Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.

Keywords

Acknowledgement

This work was carried out the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No PJ015626032021)" Rural Development Administration, Republic of Korea.

References

  1. Bai L, Zhang X, Li X, Wang S, Zhang Y, Xu G (2023) Impact of a novel hydrogel with injectable platelet-rich fibrin in diabetic wound healing. J Diabetes Res 2023, 7532637. doi: 10.1155/2023/7532637.
  2. Bakr BA, Sadek IA, El-Samad LM, El Wakil A (2023) Switchable hepatic organelles aberrations in DEN-induced mice under the influence of chemically characterized silk sericin. Tissue Cell 82, 102101. doi: 10.1016/j.tice.2023.102101.
  3. Baptista-Silva S, Bernardes BG, Borges S, Rodrigues I, Fernandes R, Gomes-Guerreiro S, et al. (2022) Exploring silk sericin for diabetic wounds: An in situ-forming hydrogel to protect against oxidative stress and improve tissue healing and regeneration. Biomolecules 12, 801. doi: 10.3390/biom12060801.
  4. Bari E, Perteghella S, Rassu G, Gavini E, Petretto GL, Bonferoni MC, et al. (2023) Sericin/crocetin micro/nanoparticles for nucleus pulposus cells regeneration: An "active" drug delivery system. Front Pharmacol 14, 1129882. doi: 10.3389/fphar.2023.1129882.
  5. Bhoopathy J, Dharmalingam S, Sathyaraj WV, Rajendran S, Rymbai S, Senthil R, et al. (2023) Sericin/human placenta-derived extracellular matrix scaffolds for cutaneous wound treatment-preparation, characterization, in vitro and in vivo analyses. Pharmaceutics 15, 362. doi: 10.3390/pharmaceutics15020362.
  6. Choi YY, Jang MJ, Park BD, Um IC (2023a) Fabrication, structure, and properties of nonwoven silk fabrics prepared with different cocoon layers. Int J Mol Sci 24, 11485. doi: 10.3390/ijms241411485.
  7. Choi YY, Kim SW, Kim KY, Um IC (2023b) Dissolution, crystallilnity, and mechanical properties of silk sericin from Sericinjam silkworm cocoons. Int J Indust Entomol 46, 9-15. doi: 10.7852/ijie.2023.46.1.9.
  8. Chuysinuan P, Pengsuk C, Lirdprapamongkol K, Thanyacharoen T, Techasakul S, Svasti J, et al. (2023) Turmeric Herb Extract-Incorporated Biopolymer Dressings with Beneficial Antibacterial, Antioxidant and Anti-Inflammatory Properties for Wound Healing. Polymers (Basel) 15, 1090. doi: 10.3390/polym15051090.
  9. Diab SE, Tayea NA, Elwakil BH, Gad AAEM, Ghareeb DA, Olama ZA (2022) Novel amoxicillin-loaded sericin biopolymeric nanoparticles: Synthesis, optimization, antibacterial and wound healing activities. Int J Mol Sci 23, 11654. doi: 10.3390/ijms231911654.
  10. Du P, Diao L, Lu Y, Liu C, Li J, Chen Y, et al. (2023) Heparin-based sericin hydrogel-encapsulated basic fibroblast growth factor for in vitro and in vivo skin repair. Heliyon 9, e13554. doi: 10.1016/j.heliyon.2023.e13554.
  11. Fu M, Li J, Liu M, Yang C, Wang Q, Wang H, et al. (2023) Sericin/nano-hydroxyapatite hydrogels based on graphene oxide for effective bone regeneration via immunomodulation and osteoinduction. Int J Nanomedicine 18, 1875-1895. doi: 10.2147/IJN.S399487.
  12. Gaviria A, Jaramillo-Quiceno N, Motta A, Restrepo-Osorio A (2023) Silk wastes and autoclaved degumming as an alternative for a sustainable silk process. Sci Rep 13, 15296. doi: 10.1038/s41598-023-41762-6.
  13. Griffanti G, McKee MD, Nazhat SN (2023) Mineralization of bone extracellular matrix-like scaffolds fabricated as silk sericin-functionalized dense collagen-fibrin hybrid hydrogels. Pharmaceutics 15, 1087. doi: 10.3390/pharmaceutics15041087.
  14. Gupta S, Alrabaiah H, Christophe M, Rahimi-Gorji M, Nadeem S, Bit A (2021) Evaluation of silk-based bioink during pre and post 3D bioprinting: A review. J Biomed Mater Res B Appl Biomater 109, 279-293. doi: 10.1002/jbm.b.34699.
  15. Habiba ES, Harby SA, El-Sayed NS, Omar EM, Bakr BA, Augustyniak M, et al. (2023) Sericin and melatonin mitigate diethylnitrosamine-instigated testicular impairment in mice: Implications of oxidative stress, spermatogenesis, steroidogenesis, and modulation of Nrf2/WT1/SF-1 signaling pathways. Life Sci 334, 122220. doi: 10.1016/j.lfs.2023.122220.
  16. Han YM, Lee DY, Song MY, Lee SW, Kim EH (2023) The hepatoprotective effects of silkworm: Insights into molecular mechanisms and implications. Int J Indust Entomol 46, 25-33. doi: 10.7852/ijie.2023.46.2.25.
  17. Jaramillo-Quiceno N, Alvarez-Lopez C, Hincapie-Llanos GA, Hincapie CA, Osorio M (2023) Characterization of a new silk sericin-based hydrogel for water retention in soil. Polymers 15, 2763. doi: 10.3390/polym15132763.
  18. Jeong HL, Kang EB, Yun SG, Park DB, Lim JO, Suh JS (2022) Effect of a silk sericin and methylsulfonylmethane (MSM) blends on inflammatory response and wound healing. Appl Sci 13, 288. doi: 10.3390/app13010288.
  19. Kanpipit N, Nualkaew N, Thapphasaraphong S (2022) The potential of purple waxy corn cob (Zea mays L.) extract loaded-sericin hydrogel for anti-hyperpigmentation, UV protection and anti-aging properties as topical product applications. Pharmaceuticals 16, 35. doi: 10.3390/ph16010035.
  20. Kim YE, Bae YJ, Jang MJ, Um IC (2023a) Effect of sericin content on the structural characteristics and properties of new silk nonwoven fabrics. Biomolecules 13, 1186. doi: 10.3390/biom13081186.
  21. Kim YE, Kim CW, Um IC (2023b) Comparison of sericin produced through laboratory- and plant-scale extraction. Int J Indust Entomol 47, 63-71. doi: 10.7852/ijie.2023.47.1.63.
  22. Kmet P, Kucerova L, Sehadova H, Wu BC, Wu YL, Zurovec M (2023) Identification of silk components in the bombycoid moth Andraca theae (Endromidae) reveals three fibroin subunits resembling those of Bombycidae and Sphingidae. J Insect Physiol 147, 104523. doi: 10.1016/j.jinsphys.2023.104523.
  23. Kumari N, Pullaguri N, Sahu V, Ealla KKR (2023) Research and therapeutic applications of silk proteins in cancer. J Biomater Appl 38, 39-50. doi: 10.1177/08853282231184572.
  24. Lee HG, Jang MJ, Park BD, Um IC (2023) Structural characteristics and properties of redissolved silk sericin. Polymers 15, 3405. doi: 10.3390/polym15163405.
  25. Lee JH, Oh JH, Kim DW, Kim SG, Kweon HY (2022) The difference in bone morphogenic protein-2 expression level among Bombyx mori subspecies. Int J Indust Entomol 45, 78-83. doi: 10.7852/ijie.2022.45.2.78.
  26. Li X, Yang W, Xie H, Wang J, Zhang L, Wang Z, et al. (2020) CNT/Sericin conductive nerve guidance conduit promotes functional recovery of transected peripheral nerve injury in a rat model. ACS Appl Mater Interfaces 12, 36860-36872. doi: 10.1021/acsami.0c08457.
  27. Li Y, Wang S, Li Y, Zhang G, Wu T, Wei Y, et al. (2023a) Resveratrol loaded native silk fiber-sericin hydrogel double interpenetrating bioactive wound dressing facilitates full-thickness skin wound healing. Biomed Mater 18, 045007. doi: 10.1088/1748-605X/acd318.
  28. Li Y, Wei Y, Zhang G, Zhang Y (2023b) Sericin from fibroin-deficient silkworms served as a promising resource for biomedicine. Polymers 15, 2941. doi: 10.3390/polym15132941.
  29. Liu D, Chen C, Ge T, Chen Z (2023) Sericin suppresses high glucose-induced EMT in mouse podocytes via miR-30a-5p and its target Snai1. Pak J Pharm Sci 36, 1457-1466.
  30. Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, et al. (2022) Silk sericin-based materials for biomedical applications. Biomaterials 287, 121638. doi: 10.1016/j.biomaterials.2022.121638.
  31. Luo FC, Zhu JJ, You XM, Yang XQ, Yin SW (2023) Biocompatible gliadin-sericin complex colloidal particles used for topical delivery of the antioxidant phloretin. Colloids Surf B Biointerfaces 225, 113244. doi: 10.1016/j.colsurfb.2023.113244.
  32. Mandal BB, Ghosh B, Kundu SC (2011) Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications. Int J Biol Macromol 49, 125-33. doi: 10.1016/j.ijbiomac.2011.03.015.
  33. Micheal AS, Subramanyam M (2014) Influence of sericin in alleviating the hydrogen peroxide induced oxidative stress in silkworm Bombyx mori: role of the amino acids. Invert Surviv J 11, 257-272.
  34. Ming P, Liu Y, Yu P, Jiang X, Yuan L, Cai S, et al. (2023) A biomimetic se-nHA/PC composite microsphere with synergistic immunomodulatory and osteogenic ability to activate bone regeneration in periodontitis. Small 2023, e2305490. doi: 10.1002/smll.202305490.
  35. Munir F, Tahir HM, Ali S, Ali A, Tehreem A, Zaidi SDES, et al. (2023) Characterization and evaluation of silk sericin-based hydrogel: A promising biomaterial for efficient healing of acute wounds. ACS Omega 8, 32090-32098. doi: 10.1021/acsomega.3c04178.
  36. Peng M, Wang G, Zhu S (2023) Cold-stored mulberry leaves affect antioxidant system and silk proteins of silkworm (Bombyx mori) larva. J Sci Food Agric. doi: 10.1002/jsfa.12849. Epub ahead of print.
  37. Rahimpour S, Jabbari H, Yousofi H, Fathi A, Mahmoodi S, Jafarian MJ, et al. (2023) Regulatory effect of sericin protein in inflammatory pathways; A comprehensive review. Pathol Res Pract 243, 154369. doi: 10.1016/j.prp.2023.154369.
  38. Rahul K, Kwon HY, Lee JH (2023) Silkworm pupal extracts attenuate interleukin-1β-induced expression of matrix metalloproteinases and inflammatory mediators in the SW1353 human chondrosarcoma cell line. Int J Indust Entomol 46, 60-66. doi: 10.7852/ijie.2023.46.2.60.
  39. Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA (2023) A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 250, 126067. doi: 10.1016/j.ijbiomac.2023.126067.
  40. Salari Z, Ashabi G, Fartoosi A, Fartoosi A, Shariatpanahi M, Aghsami M, et al. (2023) Sericin alleviates motor dysfunction by modulating inflammation and TrkB/BDNF signaling pathway in the rotenone-induced Parkinson's disease model. BMC Pharmacol Toxicol 24, 60. doi: 10.1186/s40360-023-00703-9.
  41. Sayin D, Gundogdu G, Kilic-Erkek O, Gundogdu K, Coban HS, Abban-Mete G (2023) Silk protein sericin: a promising therapy for Achilles tendinopathy-evidence from an experimental rat model. Clin Rheumatol. doi: 10.1007/s10067-023-06767-6. Epub ahead of print.
  42. Seo SJ, Das G, Shin HS, Patra JK (2023) Silk sericin protein materials: Characteristics and applications in food-sector industries. Int J Mol Sci 24, 4951. doi: 10.3390/ijms24054951.
  43. Shankar S, Murthy AN, Rachitha P, Raghavendra VB, Sunayana N, Chinnathambi A, et al. (2023) Silk sericin conjugated magnesium oxide nanoparticles for its antioxidant, anti-aging, and anti-biofilm activities. Environ Res 223, 115421. doi: 10.1016/j.envres.2023.115421.
  44. Shu WH, Yang SH, Wei M, Liu XC, Chen ZX, Wei CY, et al. (2023) Effects of sericin on oxidative stress and PI3K/AKT/mTOR signal pathway in cryopreserved mice ovarian tissue. Cryobiology 111, 16-25. doi: 10.1016/j.cryobiol.2023.03.003.
  45. Singh S, Nagalakshmi D, Sharma KK, Ravichandiran V (2021) Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon 7, e06216. doi: 10.1016/j.heliyon.2021.e06216.
  46. Tuancharoensri N, Sonjan S, Promkrainit S, Daengmankhong J, Phimnuan P, Mahasaranon S, et al. (2023) Porous poly(2-hydroxyethyl methacrylate) hydrogel scaffolds for tissue engineering: Influence of crosslinking systems and silk sericin concentration on scaffold properties. Polymers 15, 4052. doi: 10.3390/polym15204052.
  47. Ullah A, Lee GJ, Kim H, Kwon HT, Lim SI (2023) Development and evaluation of bioinspired pH-responsive sericin-chitosan-based hydrogel for controlled colonic delivery of PETase: Harnessing PETase-triggered degradation of microplastics. Int J Biol Macromol 242(Pt 1), 124698. doi: 10.1016/j.ijbiomac.2023.124698.
  48. Vatandoust SM, Mahmoudi J, Oryan S, Farajdokht F, Sadigh-Eteghad S, Shotorbani SS, et al. (2023) Sericin improves memory and sociability impairments evoked by transient global cerebral ischemia through suppression of hippocampal oxidative stress, inflammation, and apoptosis. Chin J Physiol 66, 209-219. doi: 10.4103/cjop.CJOP-D-23-00006.
  49. Wang C, Lu Q, Xiang Y, Yin Y, Li J, Liu Y, et al. (2023a) Enhanced biocompatibility of silk sericin/caffeic acid nanoparticles by red blood cell membranes cloaking. Int J Biol Macromol 238, 124133. doi: 10.1016/j.ijbiomac.2023.124133.
  50. Wang C, Xiang Y, Ma W, Guo C, Wu X (2023b) Therapeutic potential evaluation of silk sericin stabilized fisetin to ulcerative colitis. Macromol Biosci. doi: 10.1002/mabi.202300277. Epub ahead of print.
  51. Wang Y, Shi M, Yang J, Ma L, Chen X, Xu M, et al. (2023c) Sericin Ser3 ectopic expressed in posterior silk gland affects hemolymph immune melanization response via reducing melanin synthesis in silkworm. Insects 14, 245. doi: 10.3390/insects14030245.
  52. Wang YJ, Liu QS, Liu LP, Zhang YC, Qiu S, Zhang WG, et al. (2024) The silk gland proteome of Stenopsyche angustata provides insights into the underwater silk secretion. Insect Mol Biol 33, 41-54. doi: 10.1111/imb.12874.
  53. Yang S, Kang Y, Shin B, Lee KH (2022) Fabrication of sericin into micro- and macro size materials and its application. Int J Indust Entomol 45, 78-83. doi: 10.7852/ijie.2022.44.2.29.
  54. Yu CY, Nettey-Oppong EE, Effah E, Han SM, Kim SW (2022) Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study. Int J Indust Entomol 45, 56-69. doi: 10.7852/ijie.2022.45.2.56.
  55. Zahoor S, Tahir HM, Ali S, Ali A, Muzamil A, Murtaza Z, et al. (2023) Diabetic wound healing potential of silk sericin protein based hydrogels enriched with plant extracts. Int J Biol Macromol 242(Pt 4), 125184. doi: 10.1016/j.ijbiomac.2023.125184.
  56. Zhang HJ, Li FS, Wang F, Wang H, He TC, Reid RR, et al. (2022) Transgenic PDGF-BB sericin hydrogel potentiates bone regeneration of BMP9-stimulated mesenchymal stem cells through a crosstalk of the Smad-STAT pathways. Regen Biomater 10, rbac095. doi: 10.1093/rb/rbac095.
  57. Zhang Y, Sheng R, Chen J, Wang H, Zhu Y, Cao Z, et al. (2023) Silk fibroin and sericin differentially potentiate the paracrine and regenerative functions of stem cells through multiomics analysis. Adv Mater 35, e2210517. doi: 10.1002/adma.202210517.
  58. Zhao Y, Lu H, Qi D, Motta A, Frohlich-Nowoisky J, Chen J, et al. (2023) Ice recrystallization inhibition activity of silk proteins. J Phys Chem Lett 14, 8145-8150. doi: 10.1021/acs.jpclett.3c01995.