DOI QR코드

DOI QR Code

Mass spectrometry-based approaches to explore metabolism regulating ferroptosis

  • Nguyen, Chi Thi Ngoc (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Seon Min (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kang, Yun Pyo (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2022.06.23
  • Accepted : 2022.08.08
  • Published : 2022.09.30

Abstract

Ferroptosis is a type of programmed cell death distinct from apoptosis or necroptosis. Ferroptosis is well characterized by an iron-dependent accumulation of lipid peroxides and disruption of cellular membrane integrity. Many metabolic alterations can prevent or accelerate ferroptosis induction. Recent advances in analytical techniques of mass spectrometry have allowed high-throughput analysis of metabolites known to be critical for understanding ferroptosis regulatory metabolism. In this review, we introduce mass spectrometry-based analytical methods contributing to recent discovery of various metabolic pathways regulating ferroptosis, focusing on cysteine metabolism, antioxidant metabolism, and poly-unsaturated fatty acid metabolism.

Keywords

Acknowledgement

This research was supported by the New Faculty Startup Fund from Seoul National University and the National Research Foundation of Korea (NRF-2022M3A9I2017587, NRF-2022R1C1C1003619).

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072 https://doi.org/10.1016/j.cell.2012.03.042
  2. Kang YP, Mockabee-Macias A, Jiang C et al (2021) Noncanonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab 33, 174-189. e7 https://doi.org/10.1016/j.cmet.2020.12.007
  3. Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317-331 https://doi.org/10.1016/j.cell.2013.12.010
  4. Doll S, Freitas FP, Shah R et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693-698 https://doi.org/10.1038/s41586-019-1707-0
  5. Bersuker K, Hendricks JM, Li Z et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688-692 https://doi.org/10.1038/s41586-019-1705-2
  6. Mao C, Liu X, Zhang Y et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586-590 https://doi.org/10.1038/s41586-021-03539-7
  7. Kraft VA, Bezjian CT, Pfeiffer S et al (2019) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6, 41-53
  8. Zheng J and Conrad M (2020) The metabolic underpinnings of ferroptosis. Cell Metab 32, 920-937 https://doi.org/10.1016/j.cmet.2020.10.011
  9. Kagan VE, Mao G, Qu F et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13, 81-90 https://doi.org/10.1038/nchembio.2238
  10. Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13, 91-98 https://doi.org/10.1038/nchembio.2239
  11. Lee JY, Nam M, Son HY et al (2020) Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci U S A 117, 32433-32442 https://doi.org/10.1073/pnas.2006828117
  12. Shah R, Shchepinov MS and Pratt DA (2018) Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci 4, 387-396 https://doi.org/10.1021/acscentsci.7b00589
  13. Zou Y, Li H, Graham ET et al (2020) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16, 302-309 https://doi.org/10.1038/s41589-020-0472-6
  14. Banjac A, Perisic T, Sato H et al (2008) The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27, 1618-1628 https://doi.org/10.1038/sj.onc.1210796
  15. Peng H, Chen W, Cheng Y, Hakuna L, Strongin R and Wang B (2012) Thiol reactive probes and chemosensors. Sensors 12, 15907-15946 https://doi.org/10.3390/s121115907
  16. Fontaine SD, Reid R, Robinson L, Ashley GW and Santi DV (2015) Long-term stabilization of maleimide-thiol conjugates. Bioconjugate Chem 26, 145-152 https://doi.org/10.1021/bc5005262
  17. Zhao S and Li L (2020) Chemical derivatization in LC-MS-based metabolomics study. Trends Analyt Chem 131, 115988
  18. Kang YP, Torrente L, Falzone A et al (2019) Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. Elife 8, e45572
  19. Soula M, Weber RA, Zilka O et al (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 16, 1351-1360 https://doi.org/10.1038/s41589-020-0613-y
  20. Dixon SJ, Winter GE, Musavi LS et al (2015) Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol 10, 1604-1609 https://doi.org/10.1021/acschembio.5b00245
  21. Wang W, Green M, Choi JE et al (2019) CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270-274 https://doi.org/10.1038/s41586-019-1170-y
  22. Luo X, Gong HB, Gao HY et al (2021) Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ 28, 1971-1989 https://doi.org/10.1038/s41418-020-00719-2
  23. Shimada K, Skouta R, Kaplan A et al (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12, 497-503 https://doi.org/10.1038/nchembio.2079
  24. Wang L, Xing X, Zeng X et al (2022) Spatially resolved isotope tracing reveals tissue metabolic activity. Nat Methods 19, 223-230 https://doi.org/10.1038/s41592-021-01378-y