Browse > Article
http://dx.doi.org/10.14478/ace.2018.1105

Recent Advances in Composite Polymer Electrolyte Membranes for Fuel Cell  

Vijayakumar, Vijayalekshmi (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Son, Tae Yang (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.1, 2019 , pp. 1-10 More about this Journal
Abstract
Composite polymer electrolyte membranes based on porous supports have been recognized as an alternative for fuel cell applications since it can provide both mechanical as well as electrochemical stabilities. This mini-review highlights recent advances in supported composite polymer electrolyte membranes using porous matrix and nanofibrous supports. In addition, a comprehensive table listing a wide range of anion and proton exchange pore filling membranes was provided at the end of the review.
Keywords
Composites; Electrospinning; Fuel cell; Polymer electrolyte membranes; Pore filling;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 K. Kim, S. K. Kim, J. O. Park, S. W. Choi, K. H. Kim, T. Ko, C. Pak, and J. C. Lee, Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells, J. Membr. Sci., 537, 11-21 (2017).   DOI
2 E. van de Ven, A. Chairuna, G. Merle, S. P. Benito, Z. Borneman, and K. Nijmeijer, Ionic liquid doped polybenzimidazole membranes for high temperature proton exchange membrane fuel cell applications, J. Power Sources, 222, 202-209 (2013).   DOI
3 J. H. Lee, J. Y. Lee, J. H. Kim, J. Joo, S. Maurya, M. Choun, J. Lee, and S. H. Moon, SPPO pore-filled composite membranes with electrically aligned ion channels via a lab-scale continuous caster for fuel cells: An optimal DC electric field strength-IEC relationship, J. Membr. Sci., 501, 15-23 (2016).   DOI
4 S. Subianto, M. Pica, M. Casciola, P. Cojocaru, L. Merlo, G. Hards, and D. J. Jones, Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells, J. Power Sources, 233, 216-230 (2013).   DOI
5 L. Wang, J. Zhu, J. Zheng, S. Zhang, and L. Dou, Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains, RSC Adv., 4, 25195-25200 (2014).   DOI
6 H. Zhang, Y. He, J. Zhang, L. Ma, Y. Li, and J. Wang, Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer, J. Membr. Sci., 505, 108-118 (2016).   DOI
7 G. M. Liao, P. C. Li, J. S. Lin, W. T. Ma, B. C. Yu, H. Y. Li, Y. L. Liu, C. C. Yang, C. M. Shih, and S. J. Lue, Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes, J. Power Sources, 304, 136-145 (2016).   DOI
8 M. Gummalla, Z. Yang, P. Pintauro, K. M. Lee, and R. Wycisk, Porous nanofiber mats to reinforce proton conducting membranes for PEM applications, U.S. Patent, 9716285B2 (2017).
9 C. Lee, S. M. Jo, J. Choi, K. Y. Baek, Y. B. Truong, I. L. Kyratzis, and Y. G. Shul, $SiO_{2}$/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells, J. Mater. Sci., 48, 3665-3671 (2013).   DOI
10 Y. C. Cao, C. Xu,, L. Zou, K. Scott, and J. Liu, A polytetrafluoroethylene porous membrane and dimethylhexadecylamine quaternized poly(vinyl benzyl chloride) composite membrane for intermediate temperature fuel cells, J. Power Sources, 294, 691-695 (2015).   DOI
11 L. C. Jheng, W. J. Y. Chang, S. L. C. Hsu, and P. Y. Cheng, Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells, J. Power Sources, 323, 57-66 (2016).   DOI
12 H. Kang, M. Lee, W. Sim, T. Yang, and K. Shin, Effect of number of cross-linkable sites on proton conducting, pore-filling membranes, J. Membr. Sci., 460, 178-184 (2014).   DOI
13 A. Eguizabal, M. Sgroi, D. Pullini, E. Ferain, and M. P. Pina, Nanoporous PBI membranes by track etching for high temperature PEMs, J. Membr. Sci., 454, 243-252 (2014).   DOI
14 H. Wang, X. Li, X. Zhuang, B. Cheng, W. Wang, W. Kang, L. Shi, and H. Li, Modification of Nafion membrane with biofunctional $SiO_{2}$ nanofiber for proton exchange membrane fuel cells, J. Power Sources, 340, 201-209 (2017).   DOI
15 J. Wang, Y. He, L. Zhao, Y. Li, S. Cao, B. Zhang, and H. Zhang, Enhanced proton conductivities of nanofibrous composite membranes enabled by acid-base pairs under hydrated and anhydrous conditions, J. Membr. Sci., 482, 1-12 (2015).   DOI
16 X. Xu, L. Li, H. Wang, X. Li, and X. Zhuang, Solution blown sulfonated poly(ether ether ketone) nanofiber-Nafion composite membranes for proton exchange membrane fuel cells, RSC Adv., 5, 4934-4940 (2015).   DOI
17 X. Gong, G. He, Y. Wu, S. Zhang, B. Chen, Y. Dai, and X. Wu, Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly(phthalazinone ether sulfone ketone) proton exchange membranes, J. Power Sources, 358, 134-141 (2017).   DOI
18 S. Zhang, G. He, X. Gong, X. Zhu, X. Wu, X. Sun, X. Zhao, and H. Li, Electrospun nanofiber enhanced sulfonated poly(phthalazinone ether sulfone ketone) composite proton exchange membranes, J. Membr. Sci., 493, 58-65 (2015).   DOI
19 C. Klose, M. Breitwieser, S. Vierrath, M. Klingele, H. Cho, A. Buchler, J. Kerres, and S. Thiele, Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes, J. Power Sources, 361, 237-242 (2017).   DOI
20 J. Li, K. Fan, W. Cai, L. Ma, G. Xu, S. Xu, L. Ma, and H. Cheng, An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application, J. Power Sources, 332, 37-41 (2016).   DOI
21 E. L. Cussler, S. E. Hughes, W. J. Ward, and R. Aris, Performance dependence of swelling-filling treated Nafion membrane on nano-structure of macromolecular filler, J. Membr. Sci., 534, 68-72 (2017).   DOI
22 I. Shabani, M. M. Hasani-Sadrabadi, V. Haddadi-Asl, and M. Soleimani, Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications, J. Membr. Sci., 368, 233-240 (2011).   DOI
23 C. Boaretti, L. Pasquini, R. Sood, S. Giancola, A. Donnadio, M. Roso, M. Modesti, and S. Cavaliere, Mechanically stable nanofibrous $sPEEK/Aquivion^{(R)}$ composite membranes for fuel cell applications, J. Membr. Sci., 545, 66-74 (2018).   DOI
24 Y. Oshiba, J. Tomatsu, and T. Yamaguchi, Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells, J. Power Sources, 394, 67-73 (2018).   DOI
25 G. C. Abuin, E. A. Franceschini, P. Nonjola, M. K. Mathe, M. Modibedi, and H. R. Corti, A high selectivity quaternized polysulfone membrane for alkaline direct methanol fuel cells, J. Power Sources, 279, 450-459 (2015).   DOI
26 Y. He, H. Zhang, Y. Li, J. Wang, L. Ma, W. Zhang, and J. Liu, Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix, J. Mater. Chem. A, 3, 21832-21841 (2015).   DOI
27 D. J. Kim and S. Y. Nam, Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell, Membr. J., 22, 155-170 (2012).
28 S. Shi, A. Z. Weber, and A. Kusoglu, Structure/property relationship of Nafion XL composite membranes, J. Membr. Sci., 516, 123-134 (2016).   DOI
29 H. W. Zhang, D. Z. Chen, Y. Xianze, and S. B. Yin, Anion exchange membranes for fuel cells: Synthesis strategies, properties and perspectives, Fuel Cells, 15, 761-780 (2015).   DOI
30 Z. Zakaria, S. K. Kamarudin, and S. N. Timmiati, Membranes for direct ethanol fuel cells: An overview, Appl. Energy, 163, 334-342 (2016).   DOI
31 C. H. Park, S. Y. Nam, and Y. T. Hong, Molecular dynamics (MD) study of proton exchange membranes for fuel cells, Membr. J., 26, 329-336 (2016).   DOI
32 Z. Gao, G. Jiang, and P. Ma, Preparation and performance as PEM of sulfonated pre-oxidized nanofiber/SPEEK composite membrane, Fibers Polym., 18, 1025-1030 (2017).   DOI
33 S. Y. Lee, H. Kim, S. Y. Nam, and C. H. Park, Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells, Membr. J., 26, 1-13 (2016).   DOI
34 N. Kang, J. Shin, T. S. Hwang, and Y. S. Lee, A facile method for the preparation of poly(vinylidene fluoride) membranes filled with cross-linked sulfonated polystyrene, React. Funct. Polym., 99, 42-48 (2016).   DOI
35 D. J. Kim, H. Y. Hwang, H. J. Kim, and S. Y. Nam, Preparation and characterization of polysulfone substrate for reinforced composite membrane fuel cell membrane, Membr. J., 19, 63-71 (2009).
36 D. J. Kim, H. Y. Hwang, and S. Y. Nam, Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications, Membr. J., 21, 389-397 (2011).
37 T. Y. Son, T. H. Ko, J. H. Kim, J. U. Hong, and S. Y. Nam, Preparation and characterization of chitosan membranes cross-linked using poly(2,6-dimethyl-1,4-phenylene oxide) polymer and chitosan, Membr. J., 28, 205-213 (2018).   DOI
38 T. Y. Son, J. W. Jo, J. H. Kim, T. H. Kim, E. Tocci., and S. Y. Nam, Preparation and gas characterization of poly(phenylene oxide) containing imidazolium, Membr. J., 27, 528-535 (2017).   DOI
39 M. S. Lee, H. G. Kang, J. D. Jeon, Y. W. Choi, and Y. G. Yoon, A novel amphoteric ion-exchange membrane prepared by the pore-filling technique for vanadium redox flow batteries, RSC Adv., 6, 63023-63029 (2016).   DOI
40 S. Molla and V. Compan, Nanocomposite SPEEK-based membranes for Direct Methanol Fuel Cells at intermediate temperatures, J. Membr. Sci., 492, 123-136 (2015).   DOI
41 J. H. Won, H. J. Lee, J. M. Lim, J. H. Kim, Y. T. Hong, and S. Y. Lee, Anomalous behavior of proton transport and dimensional stability of sulfonated poly(arylene ether sulfone) nonwoven/silicate composite proton exchange membrane with dual phase co-continuous morphology, J. Membr. Sci., 450, 235-241 (2014).   DOI
42 S. Jang, Y. G. Yoon, Y. S. Lee, and Y. W. Choi, One-step fab-rication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells, J. Membr. Sci., 563, 896-902 (2018).   DOI
43 K. Kim, S. W. Choi, J. O. Park, S. K. Kim, M. W. Lim, K. H Kim, T. Ko, and J. C. Lee, Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures, J. Membr. Sci., 536, 76-85 (2017).   DOI
44 B. Y. Wang, C. K. Tseng, C. M. Shih, Y. L. Pai, H. P. Kuo, and S. J. Lue, Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styrene-ethylene/butylene-styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells, J. Membr. Sci., 464, 43-54 (2014).   DOI
45 S. Ichimura, Y. Sota, J. Ishikawa, Y. Imanishi, K. Kitamura, S. Tsujii, and T. Yamaguchi, Poly(p-phenylene sulfonic acid-ran-2,5-benzophenone) pore-filling membranes with highly packed acid structure and their polymer electrolyte fuel cell performances, Int. J. Hydrogen Energy, 41, 21461-21469 (2016).   DOI
46 A. Le Mong, S. Yang, and D. Kim, Pore-filling polymer electrolyte membrane based on poly(arylene ether ketone) for enhanced dimensional stability and reduced methanol permeability, J. Membr. Sci., 543, 133-142 (2017).   DOI