• 제목/요약/키워드: Recalcitrant wastewater

검색결과 23건 처리시간 0.033초

판지공장 폐수 중 난분해성 유기물질이 동력학적 계수 및 생분해에 미치는 영향 (Effect of Recalcitrant Organics on Bio-kinetic Coeffcient and Biodegradable in Box-mill Wastewater)

  • 조용덕;이상화
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.329-338
    • /
    • 2006
  • The research aims to provide the basic data for practical applications by correlating the bio-kinetic coefficients with the load of recalcitrant organic matter in box-mill wastewater. The activated sludge process was employed to a Wastewater disposal plant in an industrial setting, increase of consequently leading to the organic load. The parameter values derived by Monod-kinetic analysis were as follows:specific substrate removal rate $K_{max}=0.17day^{-1}$, half saturation constants $K_s=60.37mg/l$, decay coefficient $K_d=0.142day^{-1}$, microbial yield coefficient y = 0.388mg/mg, and max specific growth rate ${\mu}_{max}=0.006day^{-1}$. In view of biodegradability, the $TCOD_{Mn}/TBOD_5$ ratios of inflow and outflow were 1.07 and 1.41, and the $SCOD_{Mn}/SBOD_5$ ratios of inflow and outflow were 1.10 and 1.50, respectively. The higher $TCOD_{Mn}/TBOD_5$ ratio of outflow indicated that metabolites of a microorganism have accumulated in the cells.

TiO2를 이용한 저농도 유기오염물질 제거에 관한 연구 (A Study on Low Concentrations of Organic Pollutants Removal using TiO2)

  • 이용훈;강선홍
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.83-89
    • /
    • 2013
  • Microbiological treatment, chlorination, and ozonation are usually used for water treatment. However, there is weakness that these methods can't decompose and eliminate recalcitrant organic pollutants perfectly. It is possible to eliminate recalcitrant organic pollutants when photocatalysis of $TiO_2$ is used. In this study, the removal efficiencies of organic pollutants by using photocatalyst of $TiO_2$ in the slightly polluted golf club water hazard and a river were investigated. The amount of $TiO_2$ was divided into three categories of 1 g/L, 2 g/L and 4 g/L in order to investigate the adequate amount of $TiO_2$ and the removal efficiency. UV light was used as a light source for the reaction of photocatalyst. As a conclusion in this study, the efficiency of turbidity removal was increased in proportion to the amount of $TiO_2$ until 4 hours. After then the turbidity was gradually decreased. Finally, the optimum concentration of $TiO_2$ was 4 g/L. The efficiency of COD removal was increased in proportion to the amount of $TiO_2$ regardless of time.

난분해성 산업폐수 처리를 위한 고도산화기술 (Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater)

  • 김민식;이기명;이창하
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.445-462
    • /
    • 2020
  • Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.

펜톤산화와 오존산화 조합에 따른 염색폐수의 유기물질 및 색도 처리효율 비교 평가에 관한 연구 (Eveluation of Comparable Removal Efficiency of Organics and Color for the Dyeing Wastewater by Fenton Oxidation and Ozonation)

  • 김선희;이상호
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.778-784
    • /
    • 2004
  • Dyeing wastewater contains recalcitrant organics which can not be easily treated by conventional biological treatment. Therefore it has to be treated by other advanced oxidation process in order to remove COD and Color more efficiently. Fenton oxidation process is one of the most commonly applied processes in removal of COD and color for the dyeing wastewater. However it increase the treatment cost and the production of sludge by the use of the excessive chemical reagent. Ozonation is not suitable in Single treatment process because it is not effective in organics removal compared with Color removal. The purpose of this research in order to evaluate the comparable removal efficiency of COD and color by the combination of advanced oxidation processes for the dyeing wastewater. The sequential treatment processes of Fenton process and ozonation was more effective to remove organics and color than ozonation and Fenton process. The result of Fenton process for the pretreatment presented as the 81% removal of organics whereas ozonation process for the pretreatent presented as the 22.1% removal of organics. The removal of colour was higher as 81.3% for the ozonation as the pretreatment than 77.7% for the Fenton process as the pretreatment.

제올라이트와 감마선을 이용한 축산 폐수 처리 (Livestock Wastewater Treatment by Zeolite Ion Exchange and Gamma-ray Irradiation)

  • 이상률;김탁현;이면주
    • 방사선산업학회지
    • /
    • 제2권1호
    • /
    • pp.9-14
    • /
    • 2008
  • Livestock wastewater containing high concentrations of organic matters and ammonia-nitrogen has been known as one of the recalcitrant wastewater. It is difficult to treat by conventional wastewater treatment techniques. This study was carried out to evaluate the feasibility of zeolite ion exchange and gamma-ray irradiation treatment of livestock wastewater. The removal efficiencies of $SCOD_{Cr}$ and $NH_3-N$ were significantly enhanced by gamma-ray irradiation after zeolite ion exchange as a pre-treatment. However, the effects of zeolite particle size on the $SCOD_{Cr}$ and $NH_3-N$ removal efficiencies were insignificant. These results indicate that the combined process of zeolite ion exchange and gamma-ray irradiation has potential for the treatment of livestock wastewater.

호기성 그래뉼 슬러지를 이용한 축산폐수의 생물학적 처리에 관한 연구 (Biological Treatment of Livestock Wastewater using Aerobic Granular Sludge )

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제32권7호
    • /
    • pp.483-492
    • /
    • 2023
  • In this study, the treatment of livestock wastewater using an aerobic granular sludge based sequencing batch reactor was investigated. The reactor operation was carried out by general injection and split injection methods. The average removal efficiency of organic matter after the adaptation period was 71.5 and 87.4%, respectively. Some untreated organic matter was attributed to recalcitrant organic matter. The average removal efficiency of total nitrogen was 65.6 and 88.4%, respectively. These results indicate that the denitrification reaction by split injection was carried out smoothly. As for the solids, the ratio of aerobic granular sludge/mixed liquor suspended solid can be determined as the main factor of the process operation, and the ratio increased gradually and finally reached 86.0%. Correspondingly, the sludge volume index (SVI) was also improved, reaching 54 mL/g at the end of operation, and it is believed that the application of a short settling time contributed to the improvement of settleability.

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • 제9권3호
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.

조류성장에 따른 하수 박테리아 군집 변화에 관한 분자생태학적 연구 (Molecular Ecological Characterization of Wastewater Bacterial Communities in Response to Algal Growth)

  • 이주연;이장호;박준홍
    • 대한환경공학회지
    • /
    • 제33권11호
    • /
    • pp.847-854
    • /
    • 2011
  • 주요 신재생에너지인 바이오에너지의 일환으로 조류를 이용한 바이오에너지 및 자원화 기술에 대한 관심이 높아지고 있다. 조류는 영양염류 제거 능력을 활용해서 하수와 같은 오폐수 내 난분해성오염물질과 영양염류 제거의 고도처리도 가능하다. 조류와 박테리아 간의 생태적인 상호작용이 조류를 활용한 하수처리 및 하수자원화에 중요한 역할을 함에도 불구하고, 실지 하수 조건에서 조류와 박테리아간의 생태학적인 상호작용에 관한 과학적인 정보가 부족하다. 본 연구에서는 하수에서 배양이 잘 되고, 지질함량이 높다고 알려진 국내 조류 종인 Ankistrodesmus gracilis SAG 278-2의 하수오염물질 제거 특성과 조류 주입에 따른 하수 박테리아 군집의 반응을 실지 하수 조건에서 연구하였다. 하수 박테리아의 수가 증가는 조류의 성장 속도를 감소시켰으나, 반면 조류의 성장은 박테리아의 생존 및 내성호흡 생분해 속도에는 영향을 주지 않았다. 조류가 주입된 하수에서 난분해성 유기물질 및 총질소의 제거 향상이 관찰되었다. 박테리아 16S rRNA 유전자 T-RFLP 분석에 따르면 조류의 주입은 시간에 따라 박테리아 군집에 영향을 주었다. 박테리아 16S rRNA 유전자 PCR 증폭, clone 및 염기서열 분석 결과, 하수 내 조류의 성장은 박테리아 군집 구성을 변화시키며, 조류와 함께 공동 성장 가능한 박테리아는 Sediminibacterium, Sphingobacterium, Mucilaginibacter 속에 속하는 개체로 판명되었다.

Electro-Oxidation in Combination with Biological Processes for Removal of Persistent Pollutants in Wastewater: A Review

  • Navarro-Franco, Javier A.;Garzon-Zuniga, Marco A.;Drogui, Patrick;Buelna, Gerardo;Gortares-Moroyoqui, Pablo;Barragan-Huerta, Blanca E.;Vigueras-Cortes, Juan M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.1-18
    • /
    • 2022
  • Persistent organic pollutants (POPs) and emerging pollutants (EP) are characterized by their difficulty to be removed through biological oxidation processes (BOPs); they persist in the environment and could have adverse effects on the aquatic ecosystem and human health. The electro-oxidation (EO) process has been successfully used as an alternative technique to oxidize many kinds of the aforementioned pollutants in wastewater. However, the EO process has been criticized for its high energy consumption cost and its potential generation of by-products. In order to decrease these drawbacks, its combination with biological oxidation processes has been reported as a solution to reduce costs and to reach high rates of recalcitrant pollutants removal from wastewaters. Thus, the location of EO in the treatment line is an important decision to make, since this decision affects the formation of by-products and biodegradability enhancement. This paper reviews the advantages and disadvantages of EO as a pre and post-treatment in combination with BOPs. A perspective of the EO scale-up is also presented, where hydrodynamics and the relationship of A/V (area of the electrode/working volume of the electrochemical cell) experiments are examined and discussed.

식물정화기술의 개요와 환경오염 제어에의 응용 현황 (An Overview of Phytoremediation Technology and Its Applications to Environmental Pollution Control)

  • 이재흥
    • KSBB Journal
    • /
    • 제27권5호
    • /
    • pp.281-288
    • /
    • 2012
  • Phytoremediation-the use of plants for the in situ treatment of contaminated soil and water-has recently emerged as an inexpensive and user-friendly alternative to traditional methods of environmental clean-up. The present article outlines the characteristics of phytoremediation based on accumulated research evidence, along with discussions on its advantages and disadvantages. It further reviews various mechanisms involved in the phytoremediation processes: phytoextraction, rhizofiltration, phytostabilization, phytovolatilization and phytodegradation. Along the way, the author summarizes examples of its applications to environmental pollution control. These include wastewater treatment, removal of heavy metals, and hydrocarbons, remediation of recalcitrant contaminants, phytoremediation of radionuclides, and application of transgenic plants for enhanced biodegradation and phytoremediation. The remainder of the article briefly concludes with directions for future research.