Browse > Article
http://dx.doi.org/10.7841/ksbbj.2012.27.5.281

An Overview of Phytoremediation Technology and Its Applications to Environmental Pollution Control  

Lee, Jae Heung (School of Mechanical Engineering, Korea University of Technology and Education)
Publication Information
KSBB Journal / v.27, no.5, 2012 , pp. 281-288 More about this Journal
Abstract
Phytoremediation-the use of plants for the in situ treatment of contaminated soil and water-has recently emerged as an inexpensive and user-friendly alternative to traditional methods of environmental clean-up. The present article outlines the characteristics of phytoremediation based on accumulated research evidence, along with discussions on its advantages and disadvantages. It further reviews various mechanisms involved in the phytoremediation processes: phytoextraction, rhizofiltration, phytostabilization, phytovolatilization and phytodegradation. Along the way, the author summarizes examples of its applications to environmental pollution control. These include wastewater treatment, removal of heavy metals, and hydrocarbons, remediation of recalcitrant contaminants, phytoremediation of radionuclides, and application of transgenic plants for enhanced biodegradation and phytoremediation. The remainder of the article briefly concludes with directions for future research.
Keywords
Phytoremediation; environmental pollution control; hyperaccumulator; removal of heavy metals; uptake of radionuclides; growth-promoting bacteria; transgenic plants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Romkens, P., L. Bouwman, J. Japenga, and C. Draaisma (2002) Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut. 116: 109-121.   DOI
2 Natarajan, S., R. H. Stamps, L. Q. Ma, U. K. Saha, D. Hernandez, Y. Cai, and E. J. Zillioux (2011) Phytoremediation of arseniccontaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water. J. Hazard. Mater. 185: 983-989.   DOI
3 Rugh, C. (2004) Genetically engineered phytoremediation: one man's trash is another man's transgene. Trends Biotechnol. 22: 496-498.   DOI
4 Palmroth, M. R. T., J. Pichtel, and J. A. Puhakka (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour. Technol. 84: 221-228.   DOI   ScienceOn
5 Afzal, M., S. Yousaf, T. G. Reichenauer, M. Kuffner, and A. Sessitsch (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J. Hazard. Mater. 186: 1568-1575.   DOI
6 Peng, R. H., R. R. Xu, X. Y. Fu, A. S. Xiong, W. Zhao, Y. S. Tian, B. Zhu, X. F. Jin, C. Chen, H. J. Han, and Q. H. Yao (2011) Microarray analysis of the phytoremediation and phytosensing of occupational toxicant naphthalene. J. Hazard. Mater. 189: 19-26.   DOI
7 Sung, K., C. L. Munster, R. Rhykerd, M. C. Drew, and M. Y. Corapcioglu (2003) The use of vegetation to remediate soil freshly contaminated by recalcitrant contaminants. Water Res. 37: 2408-2418.   DOI
8 Rylott, E. L. and N. C. Bruce (2009) Plants disarm soil: engineering plants for phytoremediation of explosives. Trends Biotechnol. 29: 73-81.
9 Olette, R., M. Couderchet, S. Biagianti, and P. Eullaffroy (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70: 1414-1421.   DOI
10 Mitton, F. M., M. Gonzalez, A. Peña, and K. S. B. Miglioranza (2012) Effects of amendments on soil availability and phytoremediation potential of aged p,p'-DDT, p,p'-DDE and p,p'-DDD residues by willow plants (Salix sp.). J. Hazard. Mater. 203-204: 62-68.   DOI
11 Shen, C., X. Tang, S. A. Cheema, C. Zhang, M. I. Khan, F. Liang, X. Chen, Y. Zhu, Q. Lin, and Y. Chen (2009) Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-$\beta$-cyclodextrins. J. Hazard. Mater. 172: 1671-1676.   DOI
12 Didier, P., L. G. Philippe, H. Sonia, B. Amar, M. C. Claudia, D. M. and Falla Jairo (2012) Prospects of Miscanthus x giganteus for PAH phytoremediation: a microcosm study. Ind. Crop. Prod. 36: 276-281.   DOI
13 Wang, M. C., Y. T. Chen, S. H. Chen, S. W. Chang Chien, and S. V. Sunkara (2012) Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 87: 217-225.   DOI
14 Abhilash, P. C., S. Jamil, and N. Singh (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Advan. 27: 474-488.   DOI
15 Willey, N. (2010) Soils contaminated with radionuclides. pp. 305-317. In: N. Willey (ed.). Phytoremediation Methods and Reviews, Humana Press, Totowa, NJ. USA.
16 Cerne, M., B. Smodis, and M. Strok (2011) Uptake of radionuclides by a common reed (Phragmites australia (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Zirovski Vrh. Nucl. Eng. Des. 241: 1282-1286.   DOI
17 Bizily, S. P., C. L. Rugh, and R. B. Meagher (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol. 18: 213-217.   DOI   ScienceOn
18 Saleh H. M. (2012) Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl. Eng. Des. 242: 425-432.   DOI
19 Misra, S. and L. Gedamu (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor. Appl. Genet. 78: 161-168.   DOI
20 Rugh, C. L., H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, and R. B. Meagher (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial mer A gene. Proc. Natl. Acad. Sci. 93: 3182-3187.   DOI   ScienceOn
21 French, C. E., S. J. Rosser, G. J. Davies, S. Nicklin, and N. C. Bruce (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat. Biotechnol. 17: 491-494.   DOI   ScienceOn
22 Gisbert, C., R. Ros, A. D. Haro, D. J. Walker, M. P. Bernal, R. Serrano, and J. Navarro-Avino (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 303: 440-445.   DOI
23 Aken, B. V. (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr. Opin. Biotechnol. 20: 231-236.   DOI
24 Witters, N., R. Mendelsohn, S. V. Slycken, N. Weyens, E. Schreurs, E. Meers, F. Tack, R. Carleer, and J. Vangronsved (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenergy 39: 470-477.   DOI
25 Dobson, A. P., A. D. Bradshaw, and A. J. M. Baker (1997) Hopes for the future: restoration ecology and conservation biology. Science 277: 515-522.   DOI   ScienceOn
26 Witters, N., R. Mendelsohn, S. V. Passel, S. V. Slycken, N. Weyens, E. Schreurs, E. Meers, F. Tack, B. Vanheusden, and J. Vangronsved (2012) Phytoremediation, a sustainable remediation technology? II: economic assessment of $CO_{2}$ abatement through the use of phytoremediation crops for renewable energy production. Biomass Bioenergy 39: 470-477.   DOI
27 Vallero, D. A. (2010) Environmental Biotechnology: A Biosystems approach, pp. 360-362. Elsevier, London, UK.
28 Pulford, I. D. and C. Watson (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environment Int. 29: 529-540.   DOI
29 Garbisu, C. and I. Alkorta (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 77: 229-236.   DOI   ScienceOn
30 Salt, D. E., M. B. Blaylock, N. P. Kumar, V. Dushenkov, B. D. Ensley, I. Chet, and I. Raskin (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468-474.   DOI   ScienceOn
31 Cunningham, S. D., W. R. Berti, and J. W. Huang (1995) Phytoremediation of contaminated soils. Trends Biotechnol. 13: 393-397.   DOI   ScienceOn
32 Meagher, R. B. (2000) Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153-162.   DOI   ScienceOn
33 Scragg, A. (2006) Environmental Biotechnology. 2nd ed., pp. 204-216. Oxford University press, Oxford, UK.
34 Karenlampi, S., H. Schat, J. Vangronsveld, J. A. C. Verkleij, D. van der Lelie, M. Mergeay, and A. I. Tervahauta (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107: 225-231.   DOI   ScienceOn
35 Morikawa, H. and Ö. C. Erkin (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52: 1553-1558.   DOI
36 Eapen, S. and S. F. D'Souza (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol. Advan. 23: 97-114.   DOI
37 Rugh, C. L., J. F. Senecoff, R. B. Meagher, and S. A. Merkle (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16: 925-928.   DOI   ScienceOn
38 Aken, B. V. (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol. 26: 225-227.   DOI
39 Boyajian, G. E. and L. H. Carreira (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat. Biotechnol. 15: 127-128.   DOI
40 Dowling, D. N. and S. L. Doty (2009) Improving phytoremediation through biotechnology. Curr. Opin. Biotechnol. 20: 204-206.   DOI
41 Biddlestone, A. J., K. R. Gray, and G. D. Job (1991) Treatment of dairy farm wastewaters in engineered reed bed systems. Process Biochem. 26: 265-268.   DOI
42 Vymazal, J. (2002) The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol. Eng. 18: 633-646.   DOI
43 Chaney, R. L., M. Malik, Y. M. Li, S. L. Brown, E. P. Brewer, J. S. Angle, and A. J. Baker (1997) Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8: 279-284.   DOI   ScienceOn
44 Kramer, U. (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 16: 133-141.   DOI
45 Lin, Q. and I. A. Mendelssohn (1998) The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol. Eng. 10: 263-274.   DOI
46 McGrath, S. P. and F. J. Zhao (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14: 277-282.   DOI
47 Kamal, M., A. E. Ghaly, N. Mahmoud, and R. Cote (2004) Phytoaccumulation of heavy metals by aquatic plants. Environmental Int. 29: 1029-1039.   DOI
48 Ye, W. L., M. A. Khan, S. P. McGrath, and F. J. Zhao (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ. Pollut. 159: 3739-3743.   DOI
49 Teamkao, P. and P. Thiravetyan (2010) Phytoremediation of ethylene glycol and its derivatives by the burhead plant (Echinodorus cordifolius L.): effect of molecular size. Chemosphere 81: 1069-1074.   DOI
50 Chekol, T., L. R. Vough, and R. L. Chaney (2004) Phytoremediation of polychlorinated biphenyl-contaminated soil: the rhizosphere effect. Environment Int. 30: 799-804.   DOI
51 Adler, T. (1996) Botanical cleanup crews: using plants to tackle polluted water and soil (phytoremediation). Sci. News 150: 42-43.   DOI
52 Eapen, S., S. Singh, V. Thorat, C. P. Kaushik, K. Raj, and S. F. D'Souza (2006) Phytoremediation of radiostrontium ($(^{90}Sr)$) and radiocesium ($(^{137}Cs)$) using giant milky weed (Calotropis gigantea R.Br.) plants. Chemosphere 65: 2071-2073.   DOI
53 Shan, X., H. Wang, S. Zhang, H. Zhou, Y. Zheng, H. Yu, and B. Wen (2003) Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 165: 1343-1353.   DOI
54 Weis, J. and P. Weis (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment Int. 30: 686-700.
55 Glick, B. R. (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Advan. 21: 383-393.   DOI   ScienceOn
56 Sheng, X., L. Sun, Z. Huang, L. He, W. Zhang, and Z. Chen (2012) Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. J. Environ. Manage. 103: 58-64.   DOI
57 Axtell, N. R., S. P. K. Sternberg, and K. Claussen (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour. Technol. 89: 41-48.   DOI
58 Carrier, M., A. Loppinet-Serani, C. Absalon, F. Marias, C. Aymonie, and M. Mench (2011) Conversion of fern (Pteris vittata L.) biomass from a phytoremediation trial in sub- and supercritical water conditions. Biomass Bioenergy 35: 872-883.   DOI
59 Kyambadde, J., F. Kansiimme, L. Gumaelius, and G. Dalhammar (2004) A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Res. 38: 475-485.   DOI
60 Ansola, G., J. M. González, R. Cortijo, and E. de Luis (2003) Experimental and full-scale pilot constructed wetlands for municipal wastewaters treatment. Ecol. Eng. 21: 43-52.   DOI
61 Bodini, S. F., A. R. Cicalini, and F. Santori (2011) Rhizosphere dynamica during phytoremediation of olive mill wasrewater. Bioresour. Technol. 102: 4383-4389.   DOI
62 Arienzo, M., P. Adamo, and V. Cozzolino (2004) The potential of Lolium perenne for revegitation of contaminated soil from a metallurgical site. Sci. Total Environ. 319: 13-25.   DOI