Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01746

Electro-Oxidation in Combination with Biological Processes for Removal of Persistent Pollutants in Wastewater: A Review  

Navarro-Franco, Javier A. (Instituto Politecnico Nacional (IPN) CIIDIR-Durango)
Garzon-Zuniga, Marco A. (Instituto Politecnico Nacional (IPN) CIIDIR-Durango)
Drogui, Patrick (Institute Nationale de Recherche Scientifique Eau Terre et Environnement (INRS-ETE) Universite du Quebec)
Buelna, Gerardo (Institute Nationale de Recherche Scientifique Eau Terre et Environnement (INRS-ETE) Universite du Quebec)
Gortares-Moroyoqui, Pablo (Instituto Tecnologico de Sonora (ITSON))
Barragan-Huerta, Blanca E. (Instituto Politecnico Nacional Escuela Nacional de Ciencias Biologicas)
Vigueras-Cortes, Juan M. (Instituto Politecnico Nacional (IPN) CIIDIR-Durango)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.1, 2022 , pp. 1-18 More about this Journal
Abstract
Persistent organic pollutants (POPs) and emerging pollutants (EP) are characterized by their difficulty to be removed through biological oxidation processes (BOPs); they persist in the environment and could have adverse effects on the aquatic ecosystem and human health. The electro-oxidation (EO) process has been successfully used as an alternative technique to oxidize many kinds of the aforementioned pollutants in wastewater. However, the EO process has been criticized for its high energy consumption cost and its potential generation of by-products. In order to decrease these drawbacks, its combination with biological oxidation processes has been reported as a solution to reduce costs and to reach high rates of recalcitrant pollutants removal from wastewaters. Thus, the location of EO in the treatment line is an important decision to make, since this decision affects the formation of by-products and biodegradability enhancement. This paper reviews the advantages and disadvantages of EO as a pre and post-treatment in combination with BOPs. A perspective of the EO scale-up is also presented, where hydrodynamics and the relationship of A/V (area of the electrode/working volume of the electrochemical cell) experiments are examined and discussed.
Keywords
Electro-Oxidation; Biological Processes; Emerging pollutants; Persistent Organic Pollutants; Hybrid Systems;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Subramaniam and A. A. Halim, 2014, 1614(1), 597-602.
2 S. Garcia-Segura, J. D. Ocon, and M. N. Chong, Process Saf. Environ. Prot., 2018, 113, 48-67.   DOI
3 O. Ganzenko, D. Huguenot, E. D. van Hullebusch, G. Esposito, and M. A. Oturan, Environ. Sci. Pollut. Res., 2014, 21(14), 8493-8524.   DOI
4 O. M. Rodriguez-Narvaez, J. M. Peralta-Hernandez, A. Goonetilleke, and E. R. Bandala, Chem. Eng. J., 2017, 323, 361-380.   DOI
5 G. B. Tabrizi and M. Mehrvar, J. Environ. Sci. Heal. - Part A, 2004, 39(11-12), 3029-3081.   DOI
6 J. A. Barrios, A. Cano, J. E. Becerril, and B. Jimenez, J. Electroanal. Chem., 2016, 776, 148-151.   DOI
7 E. Mousset, Z. Wang, H. Olvera-Vargas, and O. Lefebvre, J. Hazard. Mater., 2018, 360, 552-559.   DOI
8 C. R. Wang, Z. F. Hou, M. R. Zhang, J. Qi, and J. Wang, J. Chem., 2015, 2015.
9 Y. Ouarda et al., Chemosphere, 2018, 193, 160-169.   DOI
10 A. Anglada, A. Urtiaga, and I. Ortiz, J. Chem. Technol. Biotechnol., 2009, 84(12), 1747-1755.   DOI
11 A. Anglada, A. M. Urtiaga, and I. Ortiz, J. Hazard. Mater., 2010, 181(1-3), 729-735.   DOI
12 F. Pawlak, K. Koziol, M. Ruman, and Z. Polkowska, Monatshefte fur Chemie, 2019, 150(9), 1573-1578.   DOI
13 M. Biel-Maeso, C. Corada-Fernandez, and P. A. LaraMartin, Water Res., 2019, 150, 129-139.   DOI
14 K. Ulucan-altuntas and E. Debik, 2020, 14(1), 1-13.
15 E. B. Estrada-Arriaga et al., Sci. Total Environ., 2016, 571, 1172-1182.   DOI
16 M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, and H. Kroiss, Water Res., 2005, 39(19), 4797-4807.   DOI
17 O. O. Olayinka, A. A. Adewusi, O. O. Olujimi, and A. A. Aladesida, J. Health & Pollution., 2018, 8(20), 1-12.
18 A. Fernandes, M. J. Pacheco, L. Ciriaco, and A. Lopes, J. Hazard. Mater., 2012, 199-200, 82-87.   DOI
19 F. Feki, F. Aloui, M. Feki, and S. Sayadi, Chemosphere, 2009, 75(2), 256-260.   DOI
20 J. feng Peng, B. zhen Wang, Y. hui Song, P. Yuan, and Z. Liu, Ecol. Eng., 2007, 31(2), 92-97.   DOI
21 P. Grafias, N. P. Xekoukoulotakis, D. Mantzavinos, and E. Diamadopoulos, Water Res., 2010, 44(9), 2773-2780.   DOI
22 M. G. Tavares, D. H. da S. Santos, S. J. A. Torres, W. R. O. Pimentel, J. Tonholo, and C. L. de P. e S. Zanta, Water Sci. Technol., 2016, 74(5), 1143-1154.   DOI
23 I. il Balcio glu Akmehmet and M. Otker, Chemosphere, 2003, 50(1), 85-95.   DOI
24 O. Serrano-Torres, J. M. Peralta-Hernandez, R. Feria-Reyes, H. Jalife-Jacobo, and S. Gutierrez-Granados, J. Hazard. Mater., 2016, 319, 78-83.   DOI
25 G. Perez, A. R. Fernandez-Alba, A. M. Urtiaga, and I. Ortiz, Water Res., 2010, 44(9), 2763-2772.   DOI
26 B. Wang, W. Kong, and H. Ma, 2007, 146, 295-301.
27 A. Fernandes, P. Spranger, A. D. Fonseca, M. J. Pacheco, L. Ciriaco, and A. Lopes, Appl. Catal. B Environ., 2014, 144, 514-520.   DOI
28 A. Fernandes et al., Environ. Sci. Pollut. Res., 2019, 26(1), 24-33.   DOI
29 J.M. Fontmorin, S. Huguet, F. Fourcade, F. Geneste, D. Floner, and A. Amrane, Chem. Eng. J., 2012, 195, 208-217.   DOI
30 E. Kotta, N. Kalogerakis, and D. Mantzavinos, J. Chem. Technol. Biotechnol., 2007, 82(3), 504-511.   DOI
31 C. Lutke Eversloh, N. Henning, M. Schulz, and T. A. Ternes, Water Res., 2014, 48(1), 237-246.   DOI
32 M. Panizza and G. Cerisola, Environ. Sci. Technol., 2004, 38(20), 5470-5475.   DOI
33 D. Mantzavinos and E. Psillakis, J. Chem. Technol. Biotechnol., 2004, 79(5), 431-454.   DOI
34 A. Urtiaga, P. Gomez, A. Arruti, and I. Ortiz, J. Chem. Technol. Biotechnol., 2014, 89(8), 1243-1250.   DOI
35 N. Z. Firouzsalari, M. Shakerkhatibi, M. Pourakbar, A. Yadeghari, G. H. Safari, and P. Sarbakhsh, J. Water Process Eng., 2019, 29, 100793.   DOI
36 B. Khaled, B. Wided, H. Bechir, E. Elimame, L. Mouna, and T. Zied, Arab. J. Chem., 2015, 12(8), 1848-1859.   DOI
37 J. Margot, L. Rossi, D. A. Barry, and C. Holliger, Wiley Interdiscip. Rev. Water, 2015, 2(5), 457-487.   DOI
38 D. R. Baker and B. Kasprzyk-Hordern, Sci. Total Environ., 2013, 454, 442-456.   DOI
39 A. de Wilt et al., J. Hazard. Mater., 2016, 304, 84-92.   DOI
40 M. J. Martin de Vidales, M. Millan, C. Saez, J. F. Perez, M. A. Rodrigo, and P. Canizares, Chemosphere, 2015, 136, 281-288.   DOI
41 P. Drogui, J. Blais, and G. Mercier, Recent Patents Eng., 2007, 1(3), 257-272.   DOI
42 L. Szpyrkowicz, S. N. Kaul, R. N. Neti, and S. Satyanarayan, Water Res., 2005, 39(8), 1601-1613.   DOI
43 X. Zhu, J. Ni, J. Wei, X. Xing, and H. Li, J. Hazard. Mater., 2011, 189(1-2), 127-133.   DOI
44 I. Oller, S. Malato, and J. A. Sanchez-Perez, Sci. Total Environ., 2011, 409(20), 4141-4166.   DOI
45 J. N. Edokpayi, J. O. Odiyo, O. E. Popoola, and T. A. M. Msagati, Int. J. Environ. Res. Public Health, 2016, 13(4), 387.   DOI
46 M. A. Alawi, I. N. Tarawneh, and Z. Ghanem, Toxin Rev., 2018, 37(2), 128-137.   DOI
47 A. Katsoyiannis and C. Samara, 2004, 38(11), 2685-2698.   DOI
48 C. Trautwein and K. Kummerer, Chemosphere, 2011, 85(5), 765-773.   DOI
49 World Health Organization (WHO), Health criteria and other supporting information-Addendum, Guidelines for Drinking-Water Quality, 1998.
50 C. Trellu et al., Chem. Eng. J., 2016, 306, 588-596.   DOI
51 J. Radjenovic, A. Bagastyo, R. A. Rozendal, Y. Mu, J. Keller, and K. Rabaey, Water Res., 2011, 45(4), 1579-1586.   DOI
52 D. Gao, H. Liang, L. Du, and J. Chen, African J. Biotechnol., 2010, 9(41), 6888-6893.
53 E. M. Abou-Taleb, M. S. Hellal, and K. H. Kamal, Water Environ. J., 2021, 35(1), 259-268.   DOI
54 B. Chen et al., Water Res., 2004, 38(16), 3558-3568.   DOI
55 O. Rodriguez-Nava, H. Ramirez-Saad, O. Loera, and I. Gonzalez, Environ. Technol., 2016, 37(23), 2964-2974.   DOI
56 A. Fernandes, D. Santos, M. J. Pacheco, L. Ciriaco, and A. Lopes, Sci. Total Environ., 2016, 541, 282-291.   DOI
57 C. Comninellis and G. Chen, Electrochemistry for the Environment New York: Springer. 2010, 2015.
58 Z. Frontistis, C. Brebou, D. Venieri, D. Mantzavinos, and A. Katsaounis, J. Chem. Technol. Biotechnol., 2011, 86(10), 1233-1236.   DOI
59 C. A. Martinez-Huitle et al., Chem. Soc. Rev., 2006, 35(12), 1324-1340.   DOI
60 A. Katsoni, D. Mantzavinos, and E. Diamadopoulos, Water Res., 2014, 57, 76-86.   DOI
61 W. Feng, D. T. Mccarthy, R. Henry, X. Zhang, K. Zhang, and A. Deletic, Chemosphere, 2018, 213, 226-234.   DOI
62 W. Feng, A. Deletic, Z. Wang, X. Zhang, T. Gengenbach, and D. T. McCarthy, Sci. Total Environ., 2019, 646, 1440-1447.   DOI
63 R. A. Torres, V. Sarria, W. Torres, P. Peringer, and C. Pulgarin, Water Res., 2003, 37(13), 3118-3124.   DOI
64 C. R. Wang, Z. F. Hou, M. R. Zhang, J. Qi, and J. Wang, 2015, 2015.
65 V. Schmalz, T. Dittmar, D. Haaken, and E. Worch, Water Res., 2009, 43(20), 5260-5266.   DOI
66 X. Zhu, J. Ni, J. Wei, X. Xing, H. Li, and Y. Jiang, Journal of Hazardous Materials, 2010, 184(1-3). 493-498.   DOI
67 I. Sires, E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza, Environ. Sci. Pollut. Res., 2014, 21(14), 8336-8367.   DOI
68 S. Wang and J. Wang, Environ. Technol., 2018, 39(15), 1985-1993.   DOI
69 J. Singla, A. Verma, and V. K. Sangal, J. Electrochem. Soc., 2017, 164(12), E312-E320.   DOI
70 C. Garcia-Gomez et al., J. Electroanal. Chem., 2014, 732, 1-10.   DOI
71 P. Canizares, A. Beteta, C. Saez, L. Rodriguez, and M. A. Rodrigo, Chemosphere, 2008, 72(7), 1080-1085.   DOI
72 P. H. Britto-Costa and L. A. M. Ruotolo, Brazilian J. Chem. Eng., 2012, 29(4), 763-773.   DOI
73 P. Verlicchi, A. Galletti, M. Petrovic, and D. BarcelO, J. Hydrol., 2010, 389(3-4), 416-428.   DOI
74 R. Shankar, L. Singh, P. Mondal, and S. Chand, Desalin. Water Treat., 2014, 52(40-42), 7711-7722.   DOI
75 A. H. Sulaymon and A. H. Abbar, Electrolysis, 2012, 17.
76 H. Monteil, Y. Pechaud, N. Oturan, C. Trellu, and M. A. Oturan, Chem. Eng. J., 2021, 404, 127048.   DOI
77 M. Shestakova and M. Sillanpa, Rev. Environ. Sci. Bio/Technology, 2017, 16(2), 223-238.   DOI
78 M. Chettiar and A. P. Watkinson, Can. J. Chem. Eng., 1983, 61(4), 568-574.   DOI
79 J. Iniesta, P. A. Michaud, M. Panizza, G. Cerisola, A. Aldaz, and C. Comninellis, Russ. J. Electrochem., 2001, 46(23), 3573-3578.
80 R. G. Simon et al., Chemie Ing. Tech., 2018, 90(11), 1832-1854.   DOI
81 A. L. Giraldo, E. D. Erazo-Erazo, O. A. Florez-Acosta, E. A. Serna-Galvis, and R. A. Torres-Palma, Chem. Eng. J., 2015, 279, 103-114.   DOI
82 Z. Ukundimana, P. I. Omwene, E. Gengec, O. T. Can, and M. Kobya, Electrochim. Acta, 2018, 286, 252-263.   DOI
83 I. Yahiaoui, F. Aissani-Benissad, F. Fourcade, and A. Amrane, Environ. Prog. Sustain. Energy, 2013, 33(1), 160-169.   DOI
84 J. D. Garcia-Espinoza, P. Mijaylova-Nacheva, and M. Aviles-Flores, Chemosphere, 2018, 192, 142-151.   DOI
85 M. Zhou, L. Liu, Y. Jiao, Q. Wang, and Q. Tan, Desalination, 2011, 277(1-3), 201-206.   DOI
86 A. M. Deshpande, S. Satyanarayan, and S. Ramakant, J. Environ. Eng., 2009, 135(8), 716-719.   DOI
87 Y. Ge, X. C. Wang, Y. Zheng, M. Dzakpasu, J. Xiong, and Y. Zhao, 2014, 4(4), 247-258.
88 J. Vidal, C. Huilinir, and R. Salazar, Electrochim. Acta, 2016, 210, 163-170.   DOI
89 A. P. Buzzini, D. W. Miwa, A. J. Motheo, and E. C. Pires, Water Sci. Technol., 2006, 54(2), 207-213.   DOI
90 G. Crini and E. Lichtfouse, Environ. Chem. Lett., 2019, 17(1), 145-155.   DOI
91 X. Liu, S. You, F. Ma, and H. Zhou, Front. Environ. Sci. Eng., 2021, 15(4), 1-10.   DOI
92 M. Panizza and G. Cerisola, Int. J. Environ. Pollut., 2006, 27(1-3), 64.   DOI
93 V. Geissen et al., Int. Soil Water Conserv. Res., 2015, 3(1), 57-65.   DOI
94 J. T. Jasper, Y. Yang, and M. R. Hoffmann, Environ. Sci. Technol., 2017, 51(12), 7111-7119.   DOI
95 L. H. Tran, P. Drogui, G. Mercier, and J. F. Blais, J. Hazard. Mater., 2009, 164(2-3), 1118-1129.   DOI